Abstract:
A percutaneous path is established into a selected bone having an interior volume occupied, at least in part, by a cancellous bone, e.g., a vertebral body. An expandable stent structure is introduced into the cancellous bone by deployment of a tool through the percutaneous path into the cancellous bone. The expandable stent structure is expanded within cancellous bone.
Abstract:
A percutaneous path is created into a bone having an interior volume occupied, at least in part, by a cancellous bone, e.g., a vertebral body. An expandable structure is introduced into the cancellous bone by deployment of a tool through the percutaneous path into the cancellous bone. The expandable structure is expanded and the tool withdrawn, leaving the expandable structure expanded inside the cancellous bone. Expansion of the expandable structure within cancellous bone can, e.g., compact cancellous bone, and/or create a cavity in cancellous bone, and/or move fractured cortical bone.
Abstract:
An expandable body is inserted into an area of cancellous within a vertebral body through a percutaneous access path. A bone filler is conveyed into the expandable body to expand the expandable body and displace cancellous bone and create a cavity occupied at least in part by the expandable body and the bone filler. The expandable body and the bone filler are left within the cavity to strengthen the vertebral body.
Abstract:
A vertebral body is selected for treatment. The vertebral body has a cortical wall enclosing a cancellous bone volume. The vertebral body also has at least one cortical plate that is depressed due to fracture. At least one maximum dimension for the cancellous bone volume is ascertained, and an expandable device is provided that has a predefined dimension when substantially expanded that is less than the maximum dimension. The expandable device is introduced into the vertebral body through a percutaneous access path while in an unexpanded condition. The expandable device is expanded while disposed within the cancellous bone volume from the unexpanded configuration toward the expanded configuration. An expansion barrier is provided in association with the expandable device that directs expansion of the expandable device in a desired direction to move the fractured cortical plate toward a desired anatomic position.
Abstract:
An expandable device is introduced into a cancellous bone volume of a vertebral body through a percutaneous access path. The vertebral body has at least one cortical plate that is depressed due to fracture. The expandable device is expanded while disposed within the cancellous bone volume. An expansion barrier placed in association with the expandable device directs expansion of the expandable device in a desired direction to move the fractured cortical plate toward a desired anatomic position.
Abstract:
Systems and methods insert an expandable body in a collapsed configuration into a space defined between cortical bone surfaces. The space can, e.g., comprise a fracture or an intervertebral space. The systems and methods cause expansion of the expandable body within the space, thereby pushing apart the cortical bone surfaces to, e.g., reduce the fracture or push apart adjacent vertebral bodies as part of a therapeutic procedure.
Abstract:
Systems and methods treat fractured or diseased bone by deploying more than a single therapeutic tool into the bone. In one arrangement, the systems and methods deploy an expandable body in association with a bone cement nozzle into the bone, such that both occupy the bone interior at the same time. In another arrangement, the systems and methods deploy multiple expandable bodies, which occupy the bone interior volume simultaneously. Expansion of the bodies form cavity or cavities in cancellous bone in the interior bone volume.
Abstract:
The present invention relates to devices and methods for treating fractured and/or diseased bone. More specifically, the present invention relates to devices and methods for repairing, reinforcing and/or treating fractured and/or diseased bone using various devices, including cavity-forming devices.
Abstract:
A percutaneous path is established into a selected bone having an interior volume occupied, at least in part, by a cancellous bone, e.g., a vertebral body. An expandable mesh structure is introduced into the cancellous bone by deployment of a tool through the percutaneous path into the cancellous bone. The expandable mesh structure is expanded within cancellous bone by conveying a material into the mesh structure. Expansion of the mesh structure can, e.g., compact cancellous bone, and/or form a cavity in cancellous bone, and/or move fractured cortical bone.
Abstract:
A percutaneous path is established into a selected bone, e.g., a vertebral body, having an interior volume occupied, at least in part, by cancellous bone. A first bone filling material is conveyed through the percutaneous path into a region of the cancellous bone. A second bone filling material is conveyed through the percutaneous path into the region. The second bone filling material is different than the first bone filling material.