Abstract:
To provide a plurality of write amplifiers that perform a data write operation upon memory cells and a write control circuit that controls a timing of a data write operation performed by the write amplifiers. When a data write operation using another write amplifier is requested while a data write operation using a predetermined write amplifier is performed, the write control circuit suspends the data write operation using the predetermined write amplifier. The suspended data write operation is performed again simultaneously with the data write operation using the other write amplifier. Accordingly, random column access like that of a DRAM can be realized by simple control.
Abstract:
A semiconductor memory device is provided that has a storage unit that includes an interlayer insulation film, a lower electrode layer embedded in the interlayer insulation film, and a recording layer and an upper electrode layer provided on the interlayer insulation film. When a predetermined current is passed to the storage unit, the recording layer is heated by substantially exceeding a melting point, and a cavity is formed near the interface between the recording layer and the lower electrode layer. As a result, the recording layer is physically separated from the lower electrode layer, and no current flows through the storage unit. When the recording layer is physically separated from the lower electrode layer, these layers cannot be returned to the contact state again. Therefore, information can be stored irreversibly.
Abstract:
A semiconductor device includes: a first read/write amplifier; a second read/write amplifier; a first group of bit lines belonging to the first read/write amplifier; a second group of bit lines belonging to the second read/write amplifier and mixed with the first group of bit lines. One of the first group of bit lines and one of the second group of bit lines are selected in parallel. A reference potential is supplied to at least one of the first non-selected bit lines adjacent to the first selected bit line selected from the first group of bit lines, and to at least one of the second non-selected bit lines adjacent to the second selected bit line selected from the first group of bit lines. At least one of remaining ones of the first and second non-selected bit lines is set into a floating state.
Abstract:
Semiconductor storage device of reduced layout area having memory cell rows accessed selectively. Memory cells, each including a programmable resistive element, are connected by a bit line to form a memory cell row. Selecting circuit for selecting a memory cell row includes a first NMOS transistor having first end connected to write amplifier, second end connected to the bit line, and a gate, and controlled such that, if the write amplifier outputs a voltage level on power-supply side after the block-select activating signal has been activated, a voltage of the same polarity as that of the power-supply voltage and exceeding the voltage level of the power supply is applied to the gate. A second NMOS transistor has first end to which the block-select activating signal is applied, a gate connected to the power supply, and second end connected to the gate of the first NMOS transistor.
Abstract:
For the purpose of providing a phase change memory device advantageous in layout and operation control by obtaining sufficient write current for high integrated phase change memory devices, the nonvolatile semiconductor memory device of the invention in which word lines and bit lines are arranged in a matrix-shape comprises a select transistor formed at each cross point of the word lines and the bit lines, and a plurality of memory elements commonly connected to the select transistor at one end and connected to a different element select line at an other end and which is capable of writing and reading data. Write and read operations for the selected memory element are controlled by supplying a predetermined current through the select transistor and through the element select line connected to the selected memory element, and the element select lines are arranged in parallel with the bit lines.
Abstract:
A semiconductor memory device includes a plurality of active regions, and a gate electrode in a fish bone shape arranged on each active region. In each active region, a plurality of source regions and a plurality of drain regions are arranged in a matrix manner. The source regions are commonly connected to a source line, and the drain regions are each connected to a lower electrode of a different memory element. According to the present invention, it is possible to assign three cell transistors connected in parallel to one memory element, so that an effective gate width is further increased.
Abstract:
A phase change memory of high compatibility with DRAM. If a cell MC0, connected to a word line WL0L, is of a low resistance, current flowing through it is higher than that flowing in a dummy cell MR0, and hence a bit line SA_B is at a potential lower than that of a bit line SA_T. This difference is amplified by a sense amplifier SA and read out. Immediately before latching cell data by the sense amplifier, an NMOS transistor MN1 is turned off to disconnect a memory cell part from a sense amplifier part. An NMOS transistor MN10 then is turned on so that data on the selected word line are all in the set state. If then writing is to be carried out, writing is carried out in the sense amplifier SA from signal lines LIO and RIO, which are I/O lines. However, writing is not performed in the memory cells. Before a precharge command is entered to precharge the word line WL0L, under, the NMOS transistor MN1 is again turned on to write reset in the cell MC0.
Abstract:
A semiconductor memory device according to the present invention has a storage unit that includes an interlayer insulation film, a lower electrode layer embedded in the interlayer insulation film, and a recording layer and an upper electrode layer provided on the interlayer insulation film. When a predetermined current is passed to the storage unit, the recording layer is heated by substantially exceeding a melting point, and a cavity is formed near the interface between the recording layer and the lower electrode layer. As a result, the recording layer is physically separated from the lower electrode layer, and no current flows through the storage unit. When the recording layer is physically separated from the lower electrode layer, these layers cannot be returned to the contact state again. Therefore, information can be stored irreversibly.
Abstract:
A memory device in which both DRAM and phase-change memory (PCRAM) are mounted is provided with a DRAM bit line, a PCRAM bit line or a PCRAM source line formed on an conductive layer shared with the DRAM bit line, and a sense amplifier connected between the DRAM bit line and the PCRAM bit line. The memory device further has a capacitive element disposed on the upper layer of the DRAM bit line, and a phase-change element disposed on the upper layer of the PCRAM bit line. The lower electrode of the capacitive element and the lower electrode of the phase-change memory element are formed on the shared conductive layer.
Abstract:
In a semiconductor memory device which is intended to have a smaller sense amplifier forming area to match with small-sized bit lines, first bit lines BL (e.g., BL2a) are formed on a first layer, and lines M2 (e.g., M2a) are formed on a second layer and connected to the first bit lines in a first connecting area located between a first memory cell area and a sense amplifier area. Second bit lines BL (e.g., BL1c) are formed on the first layer, and lines M2 (e.g., M2c) are formed on the second layer and connected to the second bit lines in a second connecting area located between a second memory cell area and the sense amplifier area. As a result, the lines M2 on the second layer can have a smaller line interval.