Abstract:
A coupling structure for a piston used in a fluid-pressure cylinder. The piston in the fluid-pressure cylinder includes a piston hole that runs through a central part of the piston in an axial direction thereof. One end of a piston rod and a coupling body coupled to the one end are inserted into the piston hole. The coupling body includes: a main part that contacts the one end of the piston rod; and an angled part formed around the main part and inclined at a prescribed angle with respect thereto. When the coupling body is subjected to pressure inside the piston hole, the diameter of the coupling body increases and a pointed edge of the angled part engages with an inner surface of the piston hole such that the coupling body couples the piston and the piston rod.
Abstract:
Cell power supply lines are arranged for memory cell columns, and adjust impedances or voltage levels of the cell power supply lines according to the voltage levels of bit lines in the corresponding columns, respectively. In the data write operation, the cell power supply line is forced into a floating state according to the bit line potential on a selected column and has the voltage level changed, and a latching capability of a selected memory cell is reduced to write data fast. Even with a low power supply voltage, a static semiconductor memory device that can stably perform write and read of data is implemented.
Abstract:
The feature of the present invention consists in: a processor main circuit for executing program instruction strings on a processor chip; a substrate bias switching unit for switching voltages of substrate biases applied to a substrate of the processor main circuit; and an operation mode control unit for controlling, in response to the execution of an instruction to proceed to a stand-by mode in the processor main circuit, the substrate bias switching unit in such a way that the biases are switched over to voltages for the stand-by mode, and for controlling, in response to an interruption of the stand-by release from the outside, the substrate bias switching unit in such a way that the biases are switched over to voltages for a normal mode, and also for releasing, after the bias voltages switched thereto have been stabilized, the stand-by of the processor main circuit to restart the operation.
Abstract:
In an integrated circuit device, there are various optimum gate lengths, thickness of gate oxide films, and threshold voltages according to the characteristics of circuits. In a semiconductor integrated circuit device in which the circuits are integrated on the same substrate, the manufacturing process is complicated in order to set the circuits to the optimum values. As a result, in association with deterioration in the yield and increase in the number of manufacturing days, the manufacturing cost increases. In order to solve the problems, according to the invention, transistors of high and low thresholds are used in a logic circuit, a memory cell uses a transistor of the same high threshold voltage and a low threshold voltage transistor, and an input/output circuit uses a transistor having the same high threshold voltage and the same concentration in a channel, and a thicker gate oxide film.
Abstract:
The gate tunnel leakage current is increased in the up-to-date process, so that it is necessary to reduce the gate tunnel leakage current in the LSI which is driven by a battery for use in a cellular phone and which needs to be in a standby mode at a low leakage current. In a semiconductor integrated circuit device, the ground source electrode lines of logic and memory circuits are kept at a ground potential in an active mode, and are kept at a voltage higher than the ground potential in an unselected standby mode. The gate tunnel leakage current can be reduced without destroying data.
Abstract:
A semiconductor integrated circuit device which includes a logical circuit containing a MIS transistor on a semiconductor substrate, a control circuit for controlling a threshold voltage of the MIS transistor in the logical circuit, an oscillation circuit containing a MIS transistor on the semiconductor substrate, and a buffer circuit, the control circuit compares the frequency of the oscillation output and frequency of a clock signal to output a first control signal, the first control signal controls a threshold voltage of the MIS transistor of the oscillation circuit, and the buffer circuit is inputted with the first control signal to output a second control signal corresponding to the first control signal, the second control signal controlling the threshold voltage of the MIS transistor of the logical circuit.
Abstract:
The semiconductor integrated circuit has so-called SOI type first MOS transistors (MNtk, MPtk) and second MOS transistors (MNtn, MPtn). The first MOS transistors have a gate isolation film thicker than that the second MOS transistors have. The first and second MOS transistors constitute a power-supply-interruptible circuit (6) and a power-supply-uninterrupted circuit (7). The power-supply-interruptible circuit has the first MOS transistors each constituting a power switch (10) between a source line (VDD) and a ground line (VSS), and the second MOS transistors connected in series with the power switch. A gate control signal for the first MOS transistors each constituting a power switch is made larger in amplitude than that for the second MOS transistors. This enables power-source cutoff control with a high degree of flexibility commensurate with the device isolation structure, which an SOI type semiconductor integrated circuit has originally.
Abstract:
A static memory cell, composed of cross-coupled MOS transistors having a relatively high threshold voltage, is equipped with MOS transistors for controlling the power supply line voltage of the memory cell. To permit the voltage difference between two data storage nodes in the inactivated memory cell to exceed the voltage difference between the two nodes when write data is applied from a data line pair DL and /DL to the two nodes in the activated memory cell, the power supply line voltage control transistors are turned on to apply a high voltage VCH to the power supply lines after the word line voltage is turned off. The data holding voltage in the memory cell can be activated to a high voltage independent of the data line voltage, and the data holding voltage can be dynamically set so that read and write operations can be performed at high speed with low power consumption.
Abstract:
A memory using an SRAM memory cell intended for low-voltage operation is designed to decrease the threshold value of MOS transistors constituting the memory cell without substantial decrease in the static noise margin, which is the operational margin of the memory cell. To this end, a voltage Vdd′ higher than a power supply voltage Vdd of a power supply line for peripheral circuits is supplied from a power supply line for memory cells as a power supply voltage for memory cells. Since the conductance of driver MOS transistors is in-creased, the threshold voltage of the MOS transistors within the memory cells can be reduced without reducing the static noise margin. Further the ratio of width between the driver MOS transistor and a transfer MOS transistor can be set to 1, thereby allowing a reduction in the memory cell area.
Abstract:
A data retaining circuit has been disclosed in which, even if a soft error occurs, it is corrected and a normal value can be maintained, the configuration is simple, and high-speed operations are enabled. In this circuit, when a soft error occurs in the data to be put out, it is corrected by a pull-up path or a pull-down path, and when a soft error occurs in the data in the pull-up path or the pull-down path, the error data in the pull-up path or the pull-down path is prevented from affecting each other, as well as turning off the correcting function to prevent the influence on the data to be put out.