摘要:
An information recording method is provided, in which a p- or n-type semiconductor wafer is irradiated with an energetic particle beam such as an electron beam thereby to control, e.g., decreased or increased generation of the surface photovoltage at the irradiated area so that information may be recorded on the wafer.
摘要:
A solid state device includes a transistor (A) and a capacitor (B). The capacitor is defined by a lower polycrystalline silicon layer or electrode (20), multiple dielectric layers (22), and an upper polycrystalline silicon layer or electrode (30). The dielectric layers are formed by vapor depositing a 3.6-18.6 nm thick layer of silicon nitride on the lower polycrystalline layer. Thicker silicon nitride layers increase the failure rate and decrease the capacitance (FIG. 8). More specifically, the silicon nitride layer is deposited on a thin, about 1 nm, oxidized film or surface (24) of the polycrystalline silicon layer. The silicon nitride layer is oxidized forming a silicon dioxide layer (28) until the silicon nitride layer is only about 3 nm thick. This forms on oxide layer that is 1-8.4 nm thick. If the silicon nitride layer is reduced below 3 nm, the polycrystalline silicon tends to oxidize rapidly reducing capacitance and increasing failure (FIG. 8).
摘要:
A device for measuring semiconductor characteristics, wherein electrodes are installed maintaining a gap on the front and back sides of a semiconductor specimen of which the characteristics are to be measured, at least one of the electrodes being transparent, the surface of the semiconductor specimen is scanned with a pulsed narrow photon beam via the transparent electrode, and a photovoltage generated between the front and back surfaces of the semiconductor specimen is taken out from the two electrodes via the capacitive coupling, in order to observe the distribution of characteristics in the surface of the semiconductor specimen.
摘要:
An internal combustion engine is provided in its exhaust system with a particulate filter for trapping combustible particulates contained in exhaust gas. A combustion promoting material injection device is provided for injecting a material for promoting combustion of the combustible particulates into the exhaust system upstream of the particulate filter. Further there are provided a bypass exhaust passage which bypasses the combustion promoting material injection device and the particulate filter, and a flow control valve which controls the amount of exhaust gas flowing through the bypass exhaust passage to control the amount of exhaust gas flowing into the particulate filter when said combustion promoting material is to be injected from the injecting device. When the combustion promoting material is injected, the flow control valve controls the amount of exhaust gas flowing into the particulate filter so that the combustion promoting material can uniformly adhere to the surface of the combustible particulates over the entire area thereof and so that the combustion temperature of the combustible particulates is prevented from rising abnormally high.