摘要:
The present invention relates to a composite bead and a fabrication method thereof, and particularly, to a porous composite bead comprising superparamagnetic cluster and nanoparticles, such as light-emitting nanoparticles, magnetic nanoparticles, metallic nanoparticles, metal oxide nanoparticles and the like, and a fabrication method thereof.
摘要:
A superparamagnetic nanoparticle is comprised of superparamagnetic nanocrystals less than 20 nm in size, and molecules having containing 3 to 5 carboxyl groups, wherein the molecules bond to surfaces of the superparamagnetic nanocrystals. A method for producing superparamagnetic nanoparticles includes preparing an alkaline solution with pH 10 to 14, producing a mixture in which molecules containing 3 to 5 carboxyl groups, a divalent transition metal and ferric precursors are dissolved, and adding the mixture into the alkaline solution.
摘要:
The invention comprises an organotitanium precursor formed from a &bgr;-ketoester and a titanium glycolate, and dimer precursors formed from a reaction of the above organotitanium precursor with alcohol, which are used as sources of titanium dioxide for metal-organic chemical vapor deposition (MOCVD).
摘要:
Disclosed are a method for detecting a biomolecule including: immobilizing a nucleic acid aptamer capable of specifically binding to a biomolecule to be detected on the surface of a bead on which fluorophores are arranged; hybridizing the nucleic acid aptamer with a guard nucleic acid (g-nucleic acid) labeled with a quencher to quench fluorescence; and reacting a sample including the biomolecule to be detected with the nucleic acid aptamer and detecting a fluorescence signal emitted as the biomolecule binds with the nucleic acid aptamer and the g-nucleic acid labeled with the quencher is separated, and a device for detecting a biomolecule for conducting the detection method. The present disclosure allows for effective, convenient and fast detection of the biomolecule to be detected, enables quantitative analysis, and enables detection of even a trace amount of sample.
摘要:
A bio-imaging nanoparticle is composed of a core nanoparticle, a bonding layer having organic ligands, surfactants and polyoxyalkylene derivatives of fatty acid ester, and veiling the core nanoparticle, and functional molecules, wherein the organic ligands are bound to a surface of the core nanoparticle, the surfactants are bound to a portion of the surface of the core nanoparticle to which the organic ligands are not bound, the polyoxyalkylene derivatives of the fatty acid ester are introduced in an empty space between the organic ligands and the surfactants of the bonding layer, and the functional molecule is bound to a second terminal end opposite to a first terminal end of both terminal ends of the organic ligand, the first terminal end of the organic ligand being bound to a shell of the core nanoparticle.
摘要:
The present invention relates to a composite bead and a fabrication method thereof, and particularly, to a porous composite bead comprising superparamagnetic cluster and nanoparticles, such as light-emitting nanoparticles, s magnetic nanoparticles, metallic nanoparticles, metal oxide nanoparticles and the like, and a fabrication method thereof.
摘要:
An environment-friendly porous bead-satellite nanoparticles composite which has excellent recovery and repeated usage performance and can be used as a catalyst, an antiviral agent, or an antimicrobial, and a fabrication method thereof are provided. The porous bead-satellite nanoparticles composite includes a porous bead, a molecule having a first end coupled to the surface of the porous bead and including a functional group at a second end, and satellite nanoparticles coupled to the functional group, wherein the porous bead may have a core-shell structure including a cluster core of nanoparticles and a porous bead shell covering the cluster core.
摘要:
Disclosed are a nanoparticle-doped porous bead with a highly enhanced photoluminescence without wavelength shift and improved durability, and a fabrication method thereof, the nanoparticle-doped porous bead comprising porous beads, and nanoparticles radially bonded onto homocentric spheres of the porous beads by an electrostatic attractive force, the homocentric sphere located inside the porous bead near a surface thereof, wherein the nanoparticles are photoluminescent nanoparticles or mixed nanoparticles of photoluminescent nanoparticles and another nanoparticles, wherein the another nanoparticle is one or more than two mixed, selected from a group consisting of magnetic nanoparticle, metallic nanoparticle and metal oxide nanoparticle.
摘要:
There is provided an organic-inorganic composite material containing a single nanoparticle therein, which is prepared by individually dispersing hydrophilic inorganic nanoparticles having a uniform particle size and conjugating biodegradable polymers to the surface of the nanoparticle, and a method of preparing the same. More particularly, the preparation method of the present invention comprises the following steps: 1) preparing hydrophilic nanoparticles by conjugating organic substances having a thiol group and a hydrophilic amine group to the surface of a core or a core/shell inorganic nanoparticle protected with a surfactant through a metal-thiolate (M-S) bond between them; 2) adjusting the concentration of the hydrophilic nanoparticles prepared in step 1) to 2×10−6 M or less and treating them in a sonication bath to prepare individually dispersed nanoparticles in the form of a single particle; and 3) conjugating biopolymers to the nanoparticle individually dispersed in step 2) through the formation of an amide bond between them under treatment in a sonication bath. The organic-inorganic composite material of the present invention exhibits high efficient photoluminescence and photostability as well as excellent chemical stability, dispersibility in water, biocompatibility and targetibility. Thus, it can be effectively used as a raw material for bioimaging or film coating.
摘要:
The present invention provides for a metal oxide nanoparticle that contains a metal core, a shell formed on the surface of the core and consisted of the same metal as the core, and an organic compound containing an element capable of covalently bonding with the nanoparticle and a hydrophilic functional group. According to the examples, uniform-sized hydrophilic metallic oxide-based nanoparticles are obtained when superparamagnetic iron oxide particles, which have a globular shape and are less than 20 nanometers in size, are first synthesized in an organic solution, and then are converted to hydrophilic particles after undergoing surface modification.