摘要:
The present disclosure generally relates to methods of using active braze techniques on beta-alumina. In some specific embodiments, the present disclosure relates to a method of sealing a portion of beta-alumina electrolyte, insulated collar and metal rings of a sodium-based thermal battery.
摘要:
The battery cell design includes a battery cell component comprises a current conducting element, that includes at least a portion that is hollow, further component is configured to be located within a battery cell. Another embodiment of the component comprises a first element that defines a first fluid path therein; and a second element that defines a second fluid path, wherein the two fluid paths are in communication with each other, further wherein the battery cell component is configured to conduct electric current. A battery cell and battery cell assembly that uses the component, and a method of cooling a battery assembly is also disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.
摘要:
A pre-sealed anode tube assembly for a sodium-metal-halide energy storage device includes an anode tube and a feed-through current collector assembly at least partially sealed within the anode tube. The pre-sealed anode tube assembly can be independently transported prior to being integrated with a desired sodium-metal-halide energy storage device.
摘要:
A lamp includes a discharge vessel. Tungsten electrodes extend into the discharge vessel. An ionizable fill is sealed within the vessel. The fill includes a buffer gas, optionally free mercury, a halide component which includes a rare earth halide selected from the group consisting of lanthanum halides, praseodymium halides, neodymium halides, samarium halides, cerium halides, and combinations thereof. A source of available oxygen is present in the discharge vessel. The rare earth halide is present in an amount such that, during lamp operation, in combination with the source of available oxygen, it maintains a difference in vapor phase solubility for tungsten species between a wall of the discharge vessel and at least a portion of at least one of the electrodes.
摘要:
A high intensity discharge lamp, in certain embodiments, includes a uniquely shaped shoulder and dimensions selected to reduce stress and associated cracking. The uniquely shaped shoulder has a variable diameter, such as, e.g., a cup-shaped geometry, a curved funnel-shaped geometry, or a conical-shaped geometry. The selected or optimized dimensions may include a tip-to-neck distance, a tip-to-wall distance, and an internal diameter of the lamp. The selected or optimized dimensions also may include a uniform wall thickness, an arc gap distance, and an electrode thickness. These dimensions and shapes are selected to reduce undesirably high maximum stresses and temperatures in the lamp. As a result, the lamp is able to provide higher performance with a longer life due to a decreased risk of stress cracking during rapid start up and steady state operation.
摘要:
A lamp includes a discharge vessel. Tungsten electrodes extend into the discharge vessel. An ionizable fill is sealed within the vessel. The fill includes a buffer gas, optionally free mercury, a halide component which includes a rare earth halide selected from the group consisting of lanthanum halides, praseodymium halides, neodymium halides, samarium halides, cerium halides, and combinations thereof. A source of available oxygen is present in the discharge vessel. The rare earth halide is present in an amount such that, during lamp operation, in combination with the source of available oxygen, it maintains a difference in vapor phase solubility for tungsten species between a wall of the discharge vessel and at least a portion of at least one of the electrodes.
摘要:
Methods for making a reinforced refractory crucible for melting titanium alloys including providing a form, applying a facecoat to the form, the facecoat having at least one facecoat layer, applying a backing about the facecoat, the backing having at least one backing layer, applying at least one reinforcing element to at least a portion of the facecoat layer, the backing layer, or a combination thereof where the reinforcing element includes at least one composition selected from ceramic compositions, metallic compositions, and combinations thereof.
摘要:
A high intensity discharge lamp, the lamp including a light emitting vessel having a wall made of ceramic material that defines an inner space with a first end portion having a respective first opening formed therein and a second end portion having a respective second opening formed therein, two discharge electrodes, with a first electrode extending therethrough the first opening of the first end portion of the vessel and a second electrode extending therethrough the second opening of the second end portion of the vessel, together forming a gap between ends of the discharge electrodes positioned within the vessel, wherein the light emitting vessel defines an inner space characterized by an inner diameter ranging from and including 1 millimeters to 3 millimeters and an inner length between and including 5 millimeters to 10 millimeters, wherein the wall of the vessel has a thickness ranging between and including 0.3 millimeters to 0.8 millimeters, wherein each tip of the electrodes within the vessel have a shank diameter ranging between and including 0.2 millimeters to 0.55 millimeters, and wherein the gap between the ends of the electrodes positioned within the vessel is smaller than 4 millimeters.
摘要:
In certain embodiments, a lamp is provided with an arc envelope including a ceramic, an end member including a material different from the ceramic, and a compliant seal disposed between the end member and the arc envelope. The compliant seal includes a plurality of layers having different thermal expansion characteristics in an order of gradual change between the arc envelope and the end member.
摘要:
A metal halide discharge lamp comprises a lamp body and a chamber formed within the body. A pair of electrodes extends into the chamber and have electrode tips spaced apart from one another. A discharge medium composition is sealed within the chamber that generates a plasma, which generates visible light. The composition comprises a rare gas, a first metal halide that produces a luminous flux and zinc iodide that generates a desired lamp operating voltage. The composition may also comprise zinc, sealed in the chamber, in elemental form that is not derived from the first metal halide or the zinc iodide. The zinc iodide halide serves as a substitute for mercury for purposes of generating desired lamp operating voltage; and, the excess pure zinc attracts or reacts with iodine atoms thereby making available electrons and the first metal halide for generation of a luminous flux.