摘要:
The present invention relates to fibrinogen preparations enriched in α-extended fibrinogen. Compositions comprising such preparations show improved clotting properties compared to preparations based on HMW Fib which typically contain no or only low amounts of α-extended fibrinogen. In particular, clot formation time and the clot strength of a clot made by α-extended fibrinogen are improved. In addition, plasmin-mediated degradation of α-extended fibrinogen is reduced as compared to plasma derived fibrinogen.
摘要:
Provided herein are hemostatic compositions. In one embodiment, the hemostatic composition includes cross-linked polymer microspheres, such as cross-linked gelatin microspheres with pores. In another embodiment, the hemostatic composition comprises an additive such as a wetting agent, a suspending agent, or both. The hemostatic compositions may also include a hemostatic agent such as thrombin, and may include a high concentration of thrombin. The hemostatic compositions may also include plasma. Also provided herein are devices for dispersing said hemostatic compositions in a diluent, and delivering said dispersed hemostatic composition. The hemostatic compositions may also fabricated with a selected geometry as administration suggests.
摘要:
The present invention relates to nucleotide sequences encoding a fibrinogen alpha, beta or gamma chain. The sequences are optimized for expression in a eukaryotic cell culture system. Such optimized nucleotide sequences allow for the efficient expression of recombinant fibrinogen and variants thereof in intact form in a eukaryotic cell culture system.
摘要:
Provided is a surgical applicator and applicator tip configured to attach in fluid communication, for the delivery of beneficial fluids. The applicator tip may also be configured to reversibly attach, in fluid communication, with a pledget. For example, the applicator tip may include male or female threads, and the pledget has threads that are complementary to the thread configuration of the tip. The applicator tip may further comprise at least one fluid transfer lumen for transfer of a fluid from the tip to the pledget. In one embodiment of the invention, the tip includes male threads and the pledget includes a pledget attachment portion. There are also provided methods for connecting the tip to the pledget. In one embodiment, a tip comprising male threads is attached to the pledget, comprising a pledget attachment portion, by tapping or pressing the tip into the pledget attachment portion. There are also provided methods of use for the attached tip and pledget, including debridement, tissue translocation, delivery of fluid substances, absorption of fluid substances and combinations thereof. In a particular embodiment, the applicator places a thrombin solution into the attached pledget for delivery of an active hemostatic agent to a tissue site.
摘要:
The invention relates to sterile powder compositions suitable for medical use comprising thrombin and fibrinogen, and to methods for producing the same, wherein the thrombin powder is produced from a liquid feedstock, wherein the feedstock comprises a solution or a suspension of thrombin, preferably a solution, wherein the powder is produced by removal of liquid by a process selected from aseptic spray drying or aseptic fluid bed drying, and wherein the powder resulting from removal of liquid from the feedstock exhibits at least 80% of the thrombin potency or activity of the liquid feedstock, and wherein the fibrinogen powder is produced by removal of liquid from a feedstock, wherein the feedstock comprises a solution or a suspension of fibrinogen, preferably a solution, by aseptic spray drying or aseptic fluid bed drying, and wherein said composition is packaged as a sterile final pharmaceutical product for medical use.
摘要:
The present invention relates to novel formulations comprising a dry powder fibrin sealant comprised of a mixture of fibrinogen and/or thrombin, for use in the treatment of wounds or injuries, in particular for use as a topical hemostatic composition or for surgical intervention.
摘要:
Biocompatible phase invertible proteinaceous compositions and methods for making and using the same are provided. The subject phase invertible compositions are prepared by combining a crosslinker and a proteinaceous substrate. The proteinaceous substrate includes one or more proteins and a polyamine, where the polyamine and a proteinaceous substrate are present in synergistic viscosity enhancing amounts, and may also include one or more of: a carbohydrate, a tackifying agent, a plasticizer, or other modification agent. In certain embodiments, the crosslinker is a heat-treated dialdehyde, e.g., heat-treated glutaraldehyde. Also provided are kits for use in preparing the subject compositions. The subject compositions, kits and systems find use in a variety of different applications.
摘要:
The present invention relates to extravascular supports. In particular, to extravascular supports which are used in vein grafting. More in particular, it relates to extravascular supports which are biodegradable.
摘要:
Provided herein are hemostatic compositions. In one embodiment, the hemostatic composition includes cross-linked polymer microspheres, such as cross-linked gelatin microspheres with pores. In another embodiment, the hemostatic composition comprises an additive such as a wetting agent, a suspending agent, or both. The hemostatic compositions may also include a hemostatic agent such as thrombin, and may include a high concentration of thrombin. The hemostatic compositions may also include plasma. Also provided herein are devices for dispersing said hemostatic compositions in a diluent, and delivering said dispersed hemostatic composition. The hemostatic compositions may also fabricated with a selected geometry as administration suggests.
摘要:
The present invention relates to fibrinogen preparations enriched in α-extended fibrinogen. Compositions comprising such preparations show improved clotting properties compared to preparations based on HMW Fib which typically contain no or only low amounts of α-extended fibrinogen. In particular, clot formation time and the clot strength of a clot made by α-extended fibrinogen are improved. In addition, plasmin-mediated degradation of α-extended fibrinogen is reduced as compared to plasma derived fibrinogen.