摘要:
According to one exemplary embodiment, a structure comprises an electronic device situated over a substrate of a semiconductor die. The structure further includes a metal cage comprising a number of contacts situated over the substrate and surrounding the electronic device. The contacts form a lateral EMI shield portion of the metal cage. The structure also includes a number of vias connecting a number of metal interconnect segments to the contacts. The metal interconnect segments form a top EMI shield portion of the metal cage.
摘要:
A method for fabricating a stressed MOS device in and on a semiconductor substrate is provided. The method comprises the steps of forming a gate electrode overlying the semiconductor substrate and etching a first trench and a second trench in the semiconductor substrate, the first trench and the second trench formed in alignment with the gate electrode. A stress inducing material is selectively grown in the first trench and in the second trench and conductivity determining impurity ions are implanted into the stress inducing material to form a source region in the first trench and a drain region in the second trench. To preserve the stress induced in the substrate, a layer of mechanically hard material is deposited on the stress inducing material after the step of ion implanting.
摘要:
An integrated circuit with a semiconductor substrate is provided. A gate dielectric is on the semiconductor substrate, and a gate is on the gate dielectric. A suicide layer is on the semiconductor substrate adjacent the gate and the gate dielectric. The silicide layer incorporates a substantially uniformly distributed and concentrated dopant therein. A shallow source/drain junction is beneath the salicide layer. An interlayer dielectric is above the semiconductor substrate, and contacts are in the interlayer dielectric to the salicide layer.
摘要:
According to one exemplary embodiment, a structure comprises an electronic device situated over a substrate of a semiconductor die. The structure further includes a metal cage comprising a number of contacts situated over the substrate and surrounding the electronic device. The contacts form a lateral EMI shield portion of the metal cage. The structure also includes a number of vias connecting a number of metal interconnect segments to the contacts. The metal interconnect segments form a top EMI shield portion of the metal cage.
摘要:
An integrated circuit (IC) utilizes a strained layer. The substrate can utilize trenches in a base layer to induce stress in a layer. The trenches define pillars on a back side of a bulk substrate or base layer of a semiconductor-on-insulator (SOI) wafer.
摘要:
A method is provided for fabricating a semiconductor component that includes a capacitor having a high capacitance per unit area. The component is formed in and on a semiconductor on insulator (SOI) substrate having a first semiconductor layer, a layer of insulator on the first semiconductor layer, and a second semiconductor layer overlying the layer of insulator. The method comprises forming a first capacitor electrode in the first semiconductor layer and depositing a dielectric layer comprising Ba1-xCaxTi1-yZryO3 overlying the first capacitor electrode. A conductive material is deposited and patterned to form a second capacitor electrode overlying the dielectric layer, thus forming a capacitor having a high dielectric constant dielectric. An MOS transistor in then formed in a portion of the second semiconductor layer, the MOS transistor, and especially the gate dielectric of the MOS transistor, formed independently of forming the capacitor and electrically isolated from the capacitor.
摘要翻译:提供了一种用于制造半导体元件的方法,该半导体元件包括具有每单位面积的高电容的电容器。 该部件形成在具有第一半导体层,第一半导体层上的绝缘体层和覆盖在绝缘体层上的第二半导体层的绝缘体上半导体(SOI)衬底中和之上。 该方法包括在第一半导体层中形成第一电容器电极,并沉积包含Ba 1-x Ti x Ti 1-y的介电层, 在第一电容器电极上覆盖的第三电极。 沉积并图案化导电材料,以形成覆盖介电层的第二电容器电极,从而形成具有高介电常数电介质的电容器。 然后形成在第二半导体层的一部分中的MOS晶体管,MOS晶体管,特别是MOS晶体管的栅极电介质,独立于形成电容器并与电容器电隔离形成。
摘要:
The silicon-on-insulator (SOI) arrangement provides dual SOI film thicknesses for body-resistance control and provides a bulk silicon substrate on which a buried oxide (BOX) layer is provided. The BOX layer has recesses formed therein and unrecessed portions. The silicon layer is formed on the BOX layer and closes the recesses and covers the unrecessed portions of the BOX layer. Shallow trench isolation regions define and isolate first silicon regions from second silicon regions that each include one of the recesses. Floating-body devices are formed within the first silicon regions, which exhibit a first thickness, and body-tied devices are formed within the second silicon regions that include the thicker silicon of the recesses.
摘要:
A method of manufacturing an integrated circuit (IC) can utilizes semiconductor substrate configured in accordance with a trench process. The substrate utilizes trenches in a base layer to induce stress in a layer. The substrate can include silicon. The trenches define pillars on a back side of a bulk substrate or base layer of a semiconductor-on-insulator (SOI) wafer.
摘要:
Methods are provided for fabricating a stressed MOS device. The method comprises the steps of forming a plurality of parallel MOS transistors in and on a semiconductor substrate. The parallel MOS transistors having a common source region, a common drain region, and a common gate electrode. A first trench is etched into the substrate in the common source region and a second trench is etched into the substrate in the common drain region. A stress inducing semiconductor material that has a crystal lattice mismatched with the semiconductor substrate is selectively grown in the first and second trenches. The growth of the stress inducing material creates both compressive longitudinal and tensile transverse stresses in the MOS device channel that enhance the drive current of P-channel MOS transistors. The decrease in drive current of N-channel MOS transistors caused by the compressive stress component is offset by the tensile stress component.
摘要:
A method is provided for fabricating a semiconductor on insulator (SOI) device. The method includes, in one embodiment, providing a monocrystalline silicon substrate having a monocrystalline silicon layer overlying the substrate and separated therefrom by a dielectric layer. A gate electrode material is deposited and patterned to form a gate electrode and a spacer. Impurity determining dopant ions are implanted into the monocrystalline silicon layer using the gate electrode as an ion implant mask to form spaced apart source and drain regions in the monocrystalline silicon layer and into the monocrystalline silicon substrate using the spacer as an ion implant mask to form spaced apart device regions in the monocrystalline substrate. Electrical contacts are then formed that contact the spaced apart device regions.