Abstract:
A multi-segment display is disclosed. Specifically, a low height LED-based display is disclosed that includes a number of segments. The segment construction may include a Printed Circuit Board (PCB) layer, a first substrate, and a second substrate that are laminated or otherwise connected to one another. The first and second substrates may include windows which allow light generated by a light source mounted on the PCB to exit the display and one or more of the windows may be filled with an encapsulant.
Abstract:
A light emitter is disclosed herein. The light emitter may have a lead frame and a plastic reflector cup. The lead frame may have a planar portion; a bond area having a light-emitting diode attached thereto; and at least two terminals configured for surface mount technology. The reflector cup may be proximate the bond area and may have an opening, wherein light emitted from the light-emitting diode passes through the opening; a side wall extending between the planar portion and the opening; and a clear lens located proximate the opening and attached to the reflector cup. The combination of the lens and the reflector cup causes a light beam originating from the light-emitting diode to be less than fifteen degrees.
Abstract:
A multi-segment display is disclosed. Specifically, a low height LED-based display is disclosed that includes a number of segments. The segment construction may include a Printed Circuit Board (PCB) layer, a first substrate, and a second substrate that are laminated or otherwise connected to one another. The first and second substrates may include windows which allow light generated by a light source mounted on the PCB to exit the display and one or more of the windows may be filled with an encapsulant.
Abstract:
A light emitter is disclosed herein. An embodiment of the light emitter comprises a substrate having a substrate surface; a light emitting diode located on the substrate surface; an encapsulant located on the substrate surface and encapsulating the light emitting diode; and a reflector cup attached to the substrate, the reflector cup having a reflector cup first side and a reflector cup second side with a hole extending between the reflector cup first side and the reflector cup second side, wherein the reflector cup first side is attached to the substrate surface so that the hole in the reflector cup first side encompasses the light emitting diode.
Abstract:
A light-emitting device and method for manufacturing the device are disclosed. In one embodiment, an optical coupling layer can formed on a substrate encapsulating a light source die. An encapsulation layer can be formed on the optical coupling layer. A top portion of the encapsulation layer can be flat and the encapsulation can comprise a high density layer and a low density layer. The high density layer can comprise wavelength-converting material precipitated on one side of the encapsulation layer. The low density layer can comprise the wavelength-converting material in particle form suspended within the encapsulation layer. In another embodiment, the method for making the light-emitting device is disclosed.
Abstract:
The PLCC package enables a narrow viewing angle without requiring a second lens by providing the PLCC package with a reflector cup having multiple stages where the geometry or some other characteristic of one stage is different from the geometry or some other characteristic of another stage.
Abstract:
An electronic assembly includes a first substrate and a second substrate, a hole through the first substrate, the second substrate having a trace with an indentation, an electronic device mounted over the indentation in the trace, and the first substrate is attached to the second substrate such that the electronic device is positioned within the hole through the first substrate.
Abstract:
A light emitter is disclosed herein. An embodiment of the light emitter comprises a substrate having a substrate surface; a light emitting diode located on the substrate surface; an encapsulant located on the substrate surface and encapsulating the light emitting diode; and a reflector cup attached to the substrate, the reflector cup having a reflector cup first side and a reflector cup second side with a hole extending between the reflector cup first side and the reflector cup second side, wherein the reflector cup first side is attached to the substrate surface so that the hole in the reflector cup first side encompasses the light emitting diode.
Abstract:
A New Phosphor-converted LED Device (“NPCLD”) is disclosed. The NPCLD may include a lens over a phosphor body, in which the lens and the phosphor body each have a substantially convex upper surface. The NPCLD may alternatively include first and second lenses, the first lens having a substantially flat interface with a phosphor body.