Abstract:
A method of forming a semiconductor structure may include preparing a continuous active layer in a region of the substrate and forming a plurality of adjacent gates on the continuous active layer. A first raised epitaxial layer may be deposited on a recessed region of the continuous active layer between a first and a second one of the plurality of gates, whereby the first and second gates are adjacent. A second raised epitaxial layer may be deposited on another recessed region of the continuous active layer between the second and a third one of the plurality of gates, whereby the second and third gates are adjacent. Using a cut mask, a trench structure is etched into the second gate structure and a region underneath the second gate in the continuous active layer. The trench is filled with isolation material for electrically isolating the first and second raised epitaxial layers.
Abstract:
Silicon germanium (SiGe) is epitaxially grown on a silicon channel above nFET and pFET regions of a substrate. SiGe is removed above the nFET regions. A device includes a silicon channel above the nFET regions and a SiGe channel above the pFET regions.
Abstract:
A device includes a substrate with a device region surrounded by an isolation region, in which the device region includes edge portions along a width of the device region and a central portion. The device further includes a gate layer disposed on the substrate over the device region, in which the gate layer includes a graded thickness in which the gate layer at edge portions of the device region has a thickness TE that is different from a thickness TC at the central portion of the device region.
Abstract:
A substrate is provided. An STI trench is formed in the substrate. A fill material is formed in the STI trench and then planarized. The substrate is exposed to an oxidizing ambient, growing a liner at a bottom and sidewalls of the STI trench. The liner reduces the Vt-W effect in high-k metal gate devices.
Abstract:
A semiconductor substrate including a first epitaxial semiconductor layer is provided. The first epitaxial semiconductor layer includes a first semiconductor material, and can be formed on an underlying epitaxial substrate layer, or can be the entirety of the semiconductor substrate. A second epitaxial semiconductor layer including a second semiconductor material is epitaxially formed upon the first epitaxial semiconductor layer. Semiconductor fins including portions of the second single crystalline semiconductor material are formed by patterning the second epitaxial semiconductor layer employing the first epitaxial semiconductor layer as an etch stop layer. At least an upper portion of the first epitaxial semiconductor layer is oxidized to provide a localized oxide layer that electrically isolates the semiconductor fins. The first semiconductor material can be selected from materials more easily oxidized relative to the second semiconductor material to provide a uniform height for the semiconductor fins after formation of the localized oxide layer.
Abstract:
A method for formation of a sealed shallow trench isolation (STI) region for a semiconductor device includes forming a STI region in a substrate, the STI region comprising a STI fill; forming a sealing recess in the STI fill of the STI region; and forming a sealing layer in the sealing recess over the STI fill.
Abstract:
A trench isolation structure and method of forming the trench isolation structure are disclosed. The method includes forming a shallow trench isolation (STI) structure having an overhang and forming a gate stack. The method further includes forming source and drain recesses adjacent to the STI structure and the gate stack. The source and drain recesses are separated from the STI structure by substrate material. The method further includes forming epitaxial source and drain regions associated with the gate stack by filling the source and drain recesses with stressor material.
Abstract:
A device includes a substrate with a device region surrounded by an isolation region, in which the device region includes edge portions along a width of the device region and a central portion. The device further includes a gate layer disposed on the substrate over the device region, in which the gate layer includes a graded thickness in which the gate layer at edge portions of the device region has a thickness TE that is different from a thickness TC at the central portion of the device region.
Abstract:
A semiconductor substrate including a first epitaxial semiconductor layer is provided. The first epitaxial semiconductor layer includes a first semiconductor material, and can be formed on an underlying epitaxial substrate layer, or can be the entirety of the semiconductor substrate. A second epitaxial semiconductor layer including a second semiconductor material is epitaxially formed upon the first epitaxial semiconductor layer. Semiconductor fins including portions of the second single crystalline semiconductor material are formed by patterning the second epitaxial semiconductor layer employing the first epitaxial semiconductor layer as an etch stop layer. At least an upper portion of the first epitaxial semiconductor layer is oxidized to provide a localized oxide layer that electrically isolates the semiconductor fins. The first semiconductor material can be selected from materials more easily oxidized relative to the second semiconductor material to provide a uniform height for the semiconductor fins after formation of the localized oxide layer.
Abstract:
Silicon germanium (SiGe) is epitaxially grown on a silicon channel above nFET and pFET regions of a substrate. SiGe is removed above the nFET regions. A device includes a silicon channel above the nFET regions and a SiGe channel above the pFET regions.