摘要:
A substrate is provided. An STI trench is formed in the substrate. A fill material is formed in the STI trench and then planarized. The substrate is exposed to an oxidizing ambient, growing a liner at a bottom and sidewalls of the STI trench. The liner reduces the Vt-W effect in high-k metal gate devices.
摘要:
A method of fabricating a gate structure in a metal oxide semiconductor field effect transistor (MOSFET) and the structure thereof is provided. The MOSFET may be n-doped or p-doped. The gate structure, disposed on a substrate, includes a plurality of gates. Each of the plurality of gates is separated by a vertical space from an adjacent gate. The method deposits at least one dual-layer liner over the gate structure filling each vertical space. The dual-layer liner includes at least two thin high density plasma (HDP) films. The deposition of both HDP films occurs in a single HDP chemical vapor deposition (CVD) process. The dual-layer liner has properties conducive for coupling with plasma enhanced chemical vapor deposition (PECVD) films to form tri-layer or quadric-layer film stacks in the gate structure.
摘要:
A method of fabricating a gate structure in a metal oxide semiconductor field effect transistor (MOSFET) and the structure thereof is provided. The MOSFET may be n-doped or p-doped. The gate structure, disposed on a substrate, includes a plurality of gates. Each of the plurality of gates is separated by a vertical space from an adjacent gate. The method deposits at least one dual-layer liner over the gate structure filling each vertical space. The dual-layer liner includes at least two thin high density plasma (HDP) films. The deposition of both HDP films occurs in a single HDP chemical vapor deposition (CVD) process. The dual-layer liner has properties conducive for coupling with plasma enhanced chemical vapor deposition (PECVD) films to form tri-layer or quadric-layer film stacks in the gate structure.
摘要:
A method is provided for making a FET device in which a nitride layer overlies the PFET gate structure, where the nitride layer has a compressive stress with a magnitude greater than about 2.8 GPa. This compressive stress permits improved device performance in the PFET. The nitride layer is deposited using a high-density plasma (HDP) process, wherein the substrate is disposed on an electrode to which a bias power in the range of about 50 W to about 500 W is supplied. The bias power is characterized as high-frequency power (supplied by an RF generator at 13.56 MHz). The FET device may also include NFET gate structures. A blocking layer is deposited over the NFET gate structures so that the nitride layer overlies the blocking layer; after the blocking layer is removed, the nitride layer is not in contact with the NFET gate structures. The nitride layer has a thickness in the range of about 300-2000 Å.
摘要:
A method is provided for making a FET device in which a nitride layer overlies the PFET gate structure, where the nitride layer has a compressive stress with a magnitude greater than about 2.8 GPa. This compressive stress permits improved device performance in the PFET. The nitride layer is deposited using a high-density plasma (HDP) process, wherein the substrate is disposed on an electrode to which a bias power in the range of about 50 W to about 500 W is supplied. The bias power is characterized as high-frequency power (supplied by an RF generator at 13.56 MHz). The FET device may also include NFET gate structures. A blocking layer is deposited over the NFET gate structures so that the nitride layer overlies the blocking layer; after the blocking layer is removed, the nitride layer is not in contact with the NFET gate structures. The nitride layer has a thickness in the range of about 300-2000 Å.
摘要:
Methods of forming a mask for implanting a substrate and implanting using an implant stopping layer with a photoresist provide lower aspect ratio masks that cause minimal damage to trench isolations in the substrate during removal of the mask. In one embodiment, a method of forming a mask includes: depositing an implant stopping layer over the substrate; depositing a photoresist over the implant stopping layer, the implant stopping layer having a density greater than the photoresist; forming a pattern in the photoresist by removing a portion of the photoresist to expose the implant stopping layer; and transferring the pattern into the implant stopping layer by etching to form the mask. The implant stopping layer may include: hydrogenated germanium carbide, nitrogenated germanium carbide, fluorinated germanium carbide, and/or amorphous germanium carbon hydride (GeHX), where X includes carbon. The methods/mask reduce scattering during implanting because the mask has higher density than conventional masks.
摘要:
The present invention relates to a bilayer cap structure for interconnect structures that comprise copper metallization or other conductive metallization. Such bilayer cap structure includes a first cap layer formed by an unbiased high density plasma (HDP) chemical vapor deposition process, and a second cap layer over the first cap layer, where the second cap layer is formed by a biased high density plasma (bHDP) chemical vapor deposition process. During the bHDP chemical vapor deposition process, a low AC bias power is applied to the substrate to increase the ion bombardment on the substrate surface and to induce resputtering of the capping material, thereby forming a seamless second cap layer with excellent reactive ion etching (RIE) selectivity.
摘要:
The invention provides a trench storage structure that includes a substrate having a trench, a capacitor conductor in the lower part of the trench, a conductive node strap in the trench adjacent the capacitor conductor, a trench top oxide above the capacitor conductor, and a conductive buried strap in the substrate adjacent the trench top oxide. The trench top oxide includes a doped trench top oxide layer above the conductive strap, and an undoped trench top oxide layer above the doped trench top oxide layer.
摘要:
A method is provided for filling high aspect ratio gaps without void formation by using a high density plasma (HDP) deposition process with a sequence of deposition and etch steps having varying etch rate-to-deposition rate (etch/dep) ratios. The first step uses an etch/dep ratio less than one to quickly fill the gap. The first step is interrupted before the opening to the gap is closed. The second step uses an etch/dep ratio greater than one to widen the gap. The second step is stopped before corners of the elements forming the gaps are exposed. These steps can be repeated until the aspect ratio of the gap is reduced so that void-free gap-fill is possible. The etch/dep ratio and duration of each step can be optimized for high throughput and high aspect ratio gap-fill capacity.
摘要:
An apparatus in a chemical vapor deposition (CVD) system monitors the actual wafer/substrate temperature during the deposition process. The apparatus makes possible the production of high quality aluminum oxide films with real-time wafer/substrate control. An infrared (IR) temperature monitoring device is used to control the actual wafer temperature to the process temperature setpoint. This eliminates all atmospheric temperature probing. The need for test runs and monitor waters as well as the resources required to perform the operations is eliminated and operating cost are reduced. High quality, uniform films of aluminum oxide can be deposited on a silicon substrates with no need for additional photolithographic steps to simulate conformality that are present in a sputtered (PVD) type application. The result is a reduction in required process steps with subsequent anticipated savings in equipment, cycle time, chemicals, reduce handling, and increased yield of devices on the substrate. The apparatus incorporates a heated source material, heated delivery lines, heated inert gas purge lines, a pressure differential mass flow controller, a control system with related valving, and a vacuum process chamber with walls that are temperature controlled as a complete source delivery system to accurately and repeatably provide source vapor for LPCVD deposition of aluminum oxide onto silicon substrates.