Abstract:
A support structure located at a bottom of a ball grid array (BGA) is provided. The support structure includes a printed circuit board (PCB) having first positioning pin holes, an interface plate having second positioning pin holes which correspond to the first positioning pin holes arranged on the PCB, a support film arranged on the PCB and having support portions, and positioning components penetrating the first positioning pin holes and the second positioning pin holes corresponding to the first positioning pin holes to assemble the support film on the PCB and the interface plate.
Abstract:
A support structure located at a bottom of a ball grid array (BGA) is provided. The support structure includes a printed circuit board (PCB) having first positioning pin holes, an interface plate having second positioning pin holes which correspond to the first positioning pin holes arranged on the PCB, a support film arranged on the PCB and having support portions, and positioning components penetrating the first positioning pin holes and the second positioning pin holes corresponding to the first positioning pin holes to assemble the support film on the PCB and the interface plate.
Abstract:
A flexible printed circuit board according to an embodiment of the present invention includes at least one insulating layer having flexibility and containing a synthetic resin as a main component; and at least one conducting layer including a circuit pattern, wherein the circuit pattern includes a continuous spiral pattern, and the flexible printed circuit board includes a curved portion that curves such that one side and another side of the spiral pattern are disposed close to each other.
Abstract:
A method of forming a stacked wiring includes forming a first adhesion layer on a substrate, forming a first wiring on the first adhesion layer, etching the first adhesion layer and the first wiring by the same first wet etching so that the first wiring is in a reverse trapezoid shape in which a first width of a top surface is larger than a second width of a bottom surface contacting the first adhesion layer as a cross-section in a direction intersecting with a first wiring extending direction, covering the top surface and a side surface of the first wiring with a second adhesion layer, forming a second wiring on the second adhesion layer, and etching the second adhesion layer and the second wiring by the same second wet etching so that the second adhesion layer and the second wiring remain on only the top surface of the first wiring.
Abstract:
The present disclosure provides a method for forming a multilayer wiring structure, which includes: forming a patterned copper-phosphorous alloy layer over a carrier by performing a plating operation, and forming a dielectric layer over the patterned copper-phosphorous alloy layer. The forming the patterned copper-phosphorous alloy layer includes providing a plating solution having a copper source and a phosphorous source.
Abstract:
The disclosure relates to a touch panel. The touch panel includes a substrate having a surface, a transparent conductive layer, at least one electrode, and a conductive trace. The transparent conductive layer includes a metal nanowire film. The metal nanowire film includes a number of first metal nanowire bundles parallel with and spaced from each other. Each of the number of first metal nanowire bundles includes a number of first metal nanowires parallel with each other. The first distance between adjacent two of the number of first metal nanowires is less than the second distance between adjacent two of the number of first metal nanowire bundles.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
A transparent conductive film comprises a transparent substrate and a metal wiring portion formed thereon. A thin metal wire contained in an electrode portion in the metal wiring portion has a surface shape satisfying the condition of Ra2/Sm>0.01 μm and has a metal volume content of 35% or more. Ra represents an arithmetic average roughness in micrometers and is equal to or smaller than the thickness of a metal wiring located in a position where the surface roughness is measured. Sm represents an average distance between convex portions and is 0.01 μm or more.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.
Abstract:
Active or functional additives are embedded into surfaces of host materials for use as components in a variety of electronic or optoelectronic devices, including solar devices, smart windows, displays, and so forth. Resulting surface-embedded device components provide improved performance, as well as cost benefits arising from their compositions and manufacturing processes.