Abstract:
A blood clotting substrate and device which has a plurality of oxygen plasma-treated polypropylene pillars extending from the surface of a polypropylene film.
Abstract:
A vascular embolization device comprises an elongated coil having a lumen, said coil and lumen being at least partially embedded in an elongated foam member comprising a flexible, biodegradable, water insoluble, open, interconnecting-cell foam material having embolic characteristics, and capable of allowing cell proliferation into the open cell foam interior. A manufacturing method is disclosed.
Abstract:
The present invention relates to a medical device for placement at a predetermined location within a passageway of the human body, and more particularly, relates to a flexible embolization device which may be delivered by a catheter to a pre-selected position within a blood vessel to thereby embolize a blood vessel or a blood vessel defect, such as an aneurysm or fistula. Specifically, the embolization device comprises an elongated coil having a lumen, the coil and lumen being at least partially embedded in an elongated foam member comprising, in some embodiments, a flexible, biodegradable, water insoluble, open, interconnecting-cell foam material having embolic characteristics, and capable of allowing cell proliferation into the open cell foam interior.
Abstract:
In various embodiments, a compensator can be attachable to an anvil of a fastening instrument. The compensator can comprise a support layer configured to be attached to the anvil and a scaffold attached to the support layer. In at least one embodiment, the scaffold can comprise a plurality of scaffold layers comprised of a biocompatible material and a plurality of cavities, wherein the layers and the cavities can define a matrix favorable to tissue and cellular ingrowth.
Abstract:
In various embodiments, a compensator can be attachable to an anvil of a fastening instrument. The compensator can comprise a support layer configured to be attached to the anvil and a scaffold attached to the support layer. In at least one embodiment, the scaffold can comprise a plurality of scaffold layers comprised of a biocompatible material and a plurality of cavities, wherein the layers and the cavities can define a matrix favorable to tissue and cellular ingrowth.
Abstract:
A blood clotting substrate and device which has a plurality of oxygen plasma-treated polypropylene pillars extending from the surface of a polypropylene film.
Abstract:
The present invention relates to a medical device for placement at a predetermined location within a passageway of the human body, and more particularly, relates to a flexible embolization device which may be delivered by a catheter to a pre-selected position within a blood vessel to thereby embolize a blood vessel or a blood vessel defect, such as an aneurysm or fistula. Specifically, the embolization device comprises an elongated coil having a lumen, the coil and lumen being at least partially embedded in an elongated foam member comprising, in some embodiments, a flexible, biodegradable, water insoluble, open, interconnecting-cell foam material having embolic characteristics, and capable of allowing cell proliferation into the open cell foam interior.
Abstract:
A method of separating blood by providing a horizontal substrate having a plurality of oxygen plasma-treated polypropylene pillars extending from the surface of a polypropylene film, depositing a whole blood sample on an upper surface of the substrate, collecting red blood cells on the upper surface of the pillars and permitting remaining components of said whole blood sample to flow downward and through the pillars.