摘要:
The present invention relates to an extruded styrenic resin foam and a method for producing the same, wherein a base resin composing the extruded styrenic resin foam is a styrenic resin mixture of a styrene-(meth)acrylic ester copolymer, or a combination of a styrene-(meth)acrylic ester copolymer and polymethyl methacrylate, and a styrenic resin except the styrene-(meth)acrylic ester copolymer, and the styrenic resin mixture contains a (meth)acrylic ester component at a ratio of 4 to 45% by weight with reference to the styrenic resin mixture. The present invention provides an extruded styrenic resin foam having an apparent density of 20 to 60 kg/m3, a thickness of 10 to 150 mm, and a low thermal conductivity, and keeping excellent heat insulation performance over a long period of time and flame retardancy, even when the styrenic resin extruded foam is foamed using a blowing agent having an ozone depleting potential of 0 (zero) and a low global warming potential.
摘要:
A process for an extruded resin foam, comprising extruding a foamable composition comprising a melted polystyrene resin and a physical blowing agent through a die to obtain a polystyrene resin foam having a thickness of at least 10 mm and a transverse cross-sectional area of at least 50 cm2, wherein said extrusion is performed so that the ratio Mz/Mn of a Z average molecular weight Mz of the polystyrene resin foam to a number average molecular weight Mn of the polystyrene resin foam, each measured by gel permeation chromatography, is 8.0 or more.
摘要:
The present invention relates to an extruded thermoplastic resin foam, particularly relates to a board extruded thermoplastic resin which has low heat conductivity, an excellent heat insulating property over a long period of time, high flame retardancy, and excellent mechanical strength.The extruded thermoplastic resin foam having an apparent density of 20 to 50 kg/m3, a closed cells ratio of 85% or more and a thickness of 10 to 150 mm, and containing a non-halogen organic physical blowing agent, wherein the thermoplastic resin composing the extruded foam contains a mixture of 100 parts by weight of a polystyrene resin (A) and 5 to 150 parts by weight of a polyester resin (B), and an endothermic calorific value of the polyester resin (B) less than 5 J/g (including 0) for fusion of the polyester resin on a DSC curve obtained by heat flux differential scanning calorimetry based on JIS K7122 (1987).
摘要翻译:挤出热塑性树脂发泡体技术领域本发明涉及挤出热塑性树脂发泡体,特别涉及导热性低,隔热性能优异,阻燃性高,机械强度优异的板挤出热塑性树脂。 表观密度为20〜50kg / m 3,闭孔率为85%以上,厚度为10〜150mm的挤出热塑性树脂发泡体,含有无卤有机物理发泡剂,其中,热塑性树脂 构成挤出泡沫体含有100重量份聚苯乙烯树脂(A)和5〜150重量份聚酯树脂(B)的混合物,聚酯树脂(B)的吸热量小于5J / g(包括0),用于通过基于JIS K7122(1987)的热通量差示扫描量热法获得的DSC曲线上聚酯树脂的熔融。
摘要:
A multi-layer expansion-molded article of a polypropylene resin, which is obtained by molding a multi-layer parison comprising a foamed resin layer and a resin layer provided on the outer side of the foamed resin layer in a mold in such manner that at least part of the opposed inner surfaces of foamed resin layer in the parison are fusion-bonded to each other, and has a polypropylene resin layer on the surface of a foamed polypropylene resin layer, wherein a melt tension, MTfr (gf) and a melt flow rate, MFRfr (g/10 min) obtained by measurement to a polypropylene resin forming the foamed resin layer in the expansion-molded article satisfy the relationship [log MTfr>−0.74 log MFRfr+0.66], and a melt tension, MTur (gf) and a melt flow rate, MFRur (g/10 min) obtained by measurement to a polypropylene resin forming the resin layer on the surface of the foamed resin layer satisfy the relationship [log MTur>−1.02 log MFRur+0.47].
摘要:
The present invention provides thick extruded foam which is extruded polyolefin resin foam having open cells, used for cushion material and packaging material and the like, which exhibits uniform physical product properties, high expansion ratio, and uniform cell diameter. The extruded open cell foam of the present invention is an extruded foam exhibiting an open cell foaming ratio of 50% or greater, the base resin whereof is principally composed of a mixed polymer consisting of 4.5 to 75 parts by weight of component A consisting of an ethylene ionomer resin, 0.5 to 30 parts by weight of component B consisting of a polyolefin resin having a melting point exceeding 120° C., and 20 to 95 parts by weight of component C consisting of one or two or more polymers selected from a group of ethylene-propylene rubbers, styrene elastomers, and polyethylene resins having melting points of 120° C. or lower (where component A+component B+component C=100 parts by weight). Various kinds of additives such as anti-shrinking agents can be mixed in this extruded foam.
摘要:
Prevention of damage of wooden construction materials of a building by termites by laying one or more panels each having a polycarbonate resin foam layer on the ground on which the building is constructed or by arranging such panels on surfaces of continuous footing of the building or of vertical concrete walls of the building. The concrete wall may be formed using modular concrete form structure units each having a pair of opposing side panels, with each side panel having a polycarbonate foam layer.
摘要:
A polycarbonate resin-containing composition is extruded through a die together with a blowing agent to produce a foamed body. The composition has a storage modulus G'.sub.A dyn/cm.sup.2 at a temperature of 250.degree. C. and an angular frequency of 0.1 rad/sec and a storage modulus G'.sub.B dyn/cm.sup.2 at a temperature of 250.degree. C. and an angular frequency of 10 rad/sec, wherein the storage modulus G'.sub.A and storage modulus G'.sub.B satisfy the following conditions: 0.ltoreq..alpha..ltoreq.2.0 2.20.ltoreq..beta..ltoreq.5.70 where .alpha. represents (logG'.sub.B -logG'.sub.A)/2 and .beta. represents (logG'.sub.B+logG'.sub.A)/2.
摘要:
Provided is a method for manufacturing a foam-molded article by molding between molds a parison with a foam layer formed by extruding an expandable molten resin composition, obtained by melt-kneading a polyethylene resin and a physical foaming agent, to an area of low pressure from a die, wherein the polyethylene resin is selected from those having a melt flow rate of 0.1 to 25 g/10 minutes and a melt tension of not less than 1.5 cN, and wherein the apparent density of the foam layer in the foam-molded article is about 0.04 to 0.3 g/cm3.
摘要翻译:本发明提供一种发泡成型体的制造方法,该模具通过将具有泡沫层的型坯与通过将通过将聚乙烯树脂和物理发泡剂熔融捏合得到的可膨胀熔融树脂组合物挤出成低压区域 从其中所述聚乙烯树脂选自熔体流动速率为0.1至25g / 10分钟且熔体张力不小于1.5cN的那些,并且其中泡沫塑模中泡沫层的表观密度 制品为约0.04至0.3g / cm 3。
摘要:
The present invention relates to a hollow molded foam article in which a plurality of polypropylene resins are used as the base resin, and to a process for the production of this hollow molded foam article. More particularly, the present invention relates to a polypropylene resin hollow molded foam article having a foam layer, in which the base resin comprises (a) a polypropylene resin with a melt tension of at least 98 mN and a melt flow rate of 0.5 to 15 g/10 minutes, (b) a polypropylene resin with a melt tension of less than 30 mN (excluding O) and a melt flow rate of 2 to 30 g/10 minutes, and (c) a polypropylene resin with a melt tension of at least 30 mN and less than 98 mN and a melt flow rate of 2 to 15 g/10 minutes, formed by positioning in a mold a softened cylindrical foam having a foam layer obtained by extruding from the die of an extruder a foamable molten resin composition containing a foaming agent, wherein the melt tension at 230° C. of the polypropylene resin that forms the foam layer is at least 10 mN and less than 49 mN, and the apparent density of the foam layer is no more than 0.3 g/cm3.
摘要:
A method for production of an extruded, polystyrene-based foam plate wherein a polystyrene-based resin is heated and kneaded together with a blowing agent, a flame retardant and a nucleating agent in an extruder to obtain a foamable molten composition, and the foamable molten composition is extruded through a die attached to an end of the extruder into a lower pressure zone. The blowing agent comprises not smaller than 25% by weight but not greater than 65% by weight, based on the total weight of the blowing agent, of an isobutane-containing saturated hydrocarbon; not smaller than 5% by weight but not greater than 70% by weight, based on the total weight of the blowing agent, of a dimethyl ether-containing ether; not smaller than 5% by weight but not greater than 55% by weight, based on the total weight of the blowing agent, of carbon dioxide; and 0–25% by weight, based on the total weight of the blowing agent, of other blowing agent components.