摘要:
A method for manufacturing a rare-earth magnet, through hot deformation processing, having a high degree of orientation at the entire area thereof and high remanence, without increasing processing cost including a step of press-forming powder as a rare-earth magnetic material to form a compact S; and a step of performing hot deformation processing to the compact S, thus manufacturing the rare-earth magnet C. The hot deformation processing includes two steps of extruding and upsetting. The extruding is to place a compact S in a die Da, and apply pressure to the compact S′ in a heated state with an extrusion punch PD so as to reduce the thickness for extrusion to prepare the rare-earth magnet intermediary body S″ having a sheet form, and the upsetting is to apply pressure to the rare-earth magnet intermediary body S″ in the thickness direction to reduce the thickness, thus manufacturing the rare-earth magnet C.
摘要:
A thermal spraying apparatus prevents adhesion of spray fumes to unsprayed regions of a bore surface during arc spraying. The apparatus includes a spray gun movable within a cylinder bore. The spray gun has at one end thereof a first discharge opening facing a direction orthogonal to the movement direction, has a second discharge opening facing direction orthogonal to the nozzle, and has, at a predetermined region located further to the side in the movement direction of the spray gun than the nozzle, third discharge openings for discharging a fluid and facing the same direction as the nozzle. A droplet, formed as arc spray wire material melts at the tip of the spray gun, is stretched with auxiliary air. By blowing atomizing air onto the droplet, spray particles are formed and sprayed onto the bore surface. Simultaneously, fume adhesion prevention air is blown toward the cylinder bore surface.
摘要:
The present invention provides a method of production of a rare earth magnet which achieves high magnetization by hot working and at the same time secures high coercivity.A method of production of the present invention is a method for producing an R-T-B-based rare earth magnet comprising: molding a powder of an R-T-B-based rare earth alloy (R: rare earth element, T: Fe or Fe part of which is substituted by Co) to form a bulk; then hot working the bulk; and before the molding, mixing with the powder of an R-T-B-based rare earth alloy either a metal which forms a liquid phase in copresence with R at a temperature lower than the hot working temperature, or an alloy which forms a liquid phase at a temperature lower than the hot working temperature.
摘要:
PROBLEM:To provide a production method of an anisotropic rare earth magnet capable of being enhanced in coercivity without adding a large amount of a rare metal such as Dy and Tb.MEANS FOR RESOLUTION:A production method of a rare earth magnet, comprising a step of bringing a compact obtained by applying hot working to impart anisotropy to a sintered body having a rare earth magnet composition into contact with a low-melting-point alloy melt containing a rare earth element.
摘要:
The present invention provides a bearing material coated slide member manufactured by coating a bearing material on a sliding surface of a slide member, and a method for manufacturing the same, in which the bearing material is composed of an Sn containing alloy powder, and is forced to impact on the sliding surface while being maintained in a solid phase, to thereby form a bearing material coated layer.
摘要:
A cylinder liner 2 is enveloped in a cylinder block through insert casting. The cylinder liner 2 includes a cylinder liner body 2a and a metal coating layer 8 formed on the body 2a through a cold spraying method. Since the metal coating layer 8 is formed in a non-molten and oxygen free state, few oxygen films or oxygen layers are formed on the surface of or in the interior of the metal coating layer 8. Thus, the thermal conductivity of the metal coating layer 8 is sufficiently high. As a result, the thermal conductivity from the metal coating layer 8 to the cylinder block is sufficiently high.
摘要:
A cylinder liner 2 is enveloped in a cylinder block through insert casting. The cylinder liner 2 includes a cylinder liner body 2a and a metal coating layer 8 formed on the body 2a through a cold spraying method. Since the metal coating layer 8 is formed in a non-molten and oxygen free state, few oxygen films or oxygen layers are formed on the surface of or in the interior of the metal coating layer 8. Thus, the thermal conductivity of the metal coating layer 8 is sufficiently high. As a result, the thermal conductivity from the metal coating layer 8 to the cylinder block is sufficiently high.
摘要:
A cylinder liner for insert casting used in a cylinder block is provided. The cylinder liner includes an outer circumferential surface having a plurality of projections. Each projection has a constricted shape. A film of a metal material is formed on the outer circumferential surface and the surfaces of the projections. As a result, the cylinder liner ensures sufficient bond strength with the casting material of a cylinder block, and sufficient thermal conductivity with the cylinder block.
摘要:
A pin standing resin substrate comprises: a resin substrate having a substantially plate-shaped main surface and comprising one of a resin and a composite material containing a resin, with a pin-pad exposed from the main surface; and a pin solder-jointed to the pin-pad, wherein the pin has been subjected to thermal treatment so as to soften the pin, and comprises a rod-like portion and an enlarged diameter portion having the same material as the rod-like portion, the enlarged diameter portion having a larger diameter than the rod-like portion and being formed at one end of the rod-like portion, and at least the enlarged diameter portion is soldered to the pin-pad.
摘要:
A pin standing resin substrate 311 comprises a resin substrate 313 and many pins 301 soldered (HD) to a pin-pad 317A, the resin substrate comprising such as a resin and having a pin-pad 317AP whose diameter of a portion exposed in a main surface 313A is 0.9 to 1.1 mm. The kovar-made pin 301 is previously heat-treated at 700° C., whereby Vickers hardness is made Hv=around 150, and the pin has a rod-like portion 301A of a diameter being 0.3 mm and an enlarged diameter portion 301B shaped in disk being 0.60 to 0.70 mm and thickness being 0.15 to 0.20 mm, the enlarged diameter portion being formed at one end of the rod-like portion 301A. This enlarged diameter portion 301B is soldered to the pin-pad.