Abstract:
A heating apparatus comprising a support base and a microplate having a first surface and an opposing second surface. The microplate is positioned adjacent the support base and comprises a plurality of wells formed in the first surface thereof. Each of the plurality of wells is sized to receive an assay therein. A sapphire crystalline transparent window is positioned adjacent the microplate opposing the support base. A heating device heats the transparent window in response to a control system.
Abstract:
Software, methods, and systems for calibrating photometric devices are provided. These involve using a non-uniform test illumination field to approximate a photon transfer curve by calculating stable pixel values and statistical dispersions on a pixel-by-pixel basis.
Abstract:
Methods, software, and apparatus for focusing an image in biological instrument are disclosed. Focusing elements are moved to various focus positions within a focus element travel range, and sample images are captured at the various focus positions. The sample images are resolved into subregions and an optimal focus position is determined based on the image intensity statistical dispersions within the identified subregions.
Abstract:
Assemblies for and methods of coupling a microtiter plate and receptacle for centrifugation of liquid from the microtiter plate to the receptacle are provided. In some embodiments, a coupling frame can be used. In other embodiments, the microtiter plate couples directly to the receptacle. In some embodiments, relative motion between the receptacle and the microtiter plate is limited in the x-y plane. In some embodiments, relative motion between the receptacle and the microtiter plate is limited in the x-z plane. In some embodiments, relative motion between the receptacle and the microtiter plate is limited in the y-z plane.
Abstract:
Software, methods, and systems for calibrating photometric devices are provided. These involve using a non-uniform test illumination field to approximate a photon transfer curve by calculating stable pixel values and statistical dispersions on a pixel-by-pixel basis.
Abstract:
Software, methods, and systems for calibrating photometric devices are provided. These involve using a non-uniform test illumination field to approximate a photon transfer curve by calculating stable pixel values and statistical dispersions on a pixel-by-pixel basis.
Abstract:
An optical inspection module and method are provided for detecting particles on a surface of a substrate. The module includes a substrate holding position, wherein the surface of the substrate defines an object plane at the substrate holding position. A light source illuminates substantially the entire substrate surface. A lens is oriented to collect light reflected from the light beam path by the substrate surface and has a lens plane. A photodetector array has a plurality of pixels defining an image plane within a focal plane of the lens. Each pixel corresponds to an area on the surface and the plurality of pixels together form a field of view that covers substantially the entire surface.
Abstract:
A method for reducing targeting errors encountered when trying to locate contaminant particles in a high-magnification imaging device, based on estimates of the particle positions obtained from a scanning device. The method of the invention includes scanning a semiconductor wafer in a scanning device, then preferably moving the wafer to a different orientation, and scanning the wafer again, to obtain at least two sets of particle coordinates that may differ slightly because of uncertainties in the scanning process. The multiple sets of coordinates are averaged to reduce the targeting errors, but only after transforming the coordinates to a common coordinate system. The transformation step includes computing transformation parameters for each possible pair of particles detected in at least two scans, averaging the results, and then transforming all of the particle coordinates to the common coordinate system. Optionally, the method may include discarding any transformation parameters that deviate too far from the average, and then computing the average transformation parameters again.
Abstract:
A method for reducing targeting errors encountered when trying to locate contaminant particles in a high-magnification imaging device, based on estimates of the particle positions obtained from a scanning device. The method of the invention uses three techniques separately and in combination. The first technique includes selecting at least three reference particles, to provide multiple unique pairs of reference particles for computation of an averaged set of coordinate transformation parameters, used to transform particle position coordinates from the coordinate system of the scanning device to the coordinate system of the imaging device. The averaged transformation parameters result in much smaller targeting errors between the estimated and actual positions of the particles. The targeting errors are further reduced by the use of multiple scans of the scanning device. In a third technique, accumulated reference particle targeting errors observed in prior processing of other wafers are used to reduce these targeting errors when processing a new wafer.
Abstract:
A method for calibrating temperature can include cycling temperatures of a set of wells, wherein each well of the set comprises a sample with a spectrally distinguishable species. The method can further include measuring a signal from the spectrally distinguishable species for each well at a temperature during a first temperature cycle, and calibrating the temperatures for measuring the signal from each well during subsequent temperature cycles.