Abstract:
Memory security technologies are described. An example processing device includes a processor core and a memory controller coupled to the processor core and a memory. The processor core can determine that an exit condition to transfer control of a resource for a processor core from a first virtual machine monitor (VMM) to a second VMM has occurred. The processor core can also determine whether a control virtual machine control structure (VMCS) link pointer is valid. The processor core can also determine whether a reason value corresponding to the control VMCS link pointer is set. The processor core can also determine whether the reason value is set to zero. The processor core can also determining whether an exception bit corresponding to a specific exception type of a reason value is set. The processor core can also transfer a control of the resource from the first VMM to the second VMM.
Abstract:
The application discloses methods, materials, and compositions for the labeling of molecules, for example, proteins, in living cells or in subcellular compartments of living cells. In particular, the application relates to proteomic analysis methods; materials and compositions and means based on direct tagging of unknown proteins with tagging enzymes (such as biotin ligase or a peroxidase) within the vicinity of a tagging substrate (such as a tyramide) within living cells, with optional targeting to specific subcellular locations by expression of genetic constructs.
Abstract:
Methods and apparatus are disclosed to capture error conditions in lightweight virtual machine managers. A disclosed example method includes defining a shared memory structure between the VMM and a virtual machine (VM), when the VM is spawned by the VMM, installing an abort handler on the VM associated with a vector value, in response to detecting an error, transferring VMM state information to the shared memory structure, and invoking the abort handler on the VM to transfer contents of the shared memory structure to a non-volatile memory.
Abstract:
Apparatus and method for monitoring a vapor deposition installation in which a gas mixture can undergo gas phase nucleation (GPN) and/or chemically attack the product device, under process conditions supportive of such behavior. The apparatus includes a radiation source arranged to transmit source radiation through a sample of the gas mixture, and a thermopile detector assembly arranged to receive output radiation resulting from interaction of the source radiation with the gas mixture sample, and to responsively generate an output indicative of onset of the gas phase nucleation and/or chemical attack when such onset occurs. Such monitoring apparatus and methodology is useful in tungsten CVD processing to achieve high rate tungsten film growth without GPN or chemical attack.
Abstract:
An ion implantation system and method, providing cooling of dopant gas in the dopant gas feed line, to combat heating and decomposition of the dopant gas by arc chamber heat generation, e.g., using boron source materials such as B2F4 or other alternatives to BF3. Various arc chamber thermal management arrangements are described, as well as modification of plasma properties, specific flow arrangements, cleaning processes, power management, eqillibrium shifting, optimization of extraction optics, detection of deposits in flow passages, and source life optimization, to achieve efficient operation of the ion implantation system.
Abstract:
The application discloses methods, materials, and compositions for the labeling of molecules, for example, proteins, in living cells or in subcellular compartments of living cells. In particular, the application relates to proteomic analysis methods; materials and compositions and means based on direct tagging of unknown proteins with tagging enzymes (such as biotin ligase or a peroxidase) within the vicinity of a tagging substrate (such as a tyramide) within living cells, with optional targeting to specific subcellular locations by expression of genetic constructs.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
An isotopically-enriched, boron-containing compound comprising two or more boron atoms and at least one fluorine atom, wherein at least one of the boron atoms contains a desired isotope of boron in a concentration or ratio greater than a natural abundance concentration or ratio thereof. The compound may have a chemical formula of B2F4. Synthesis methods for such compounds, and ion implantation methods using such compounds, are described, as well as storage and dispensing vessels in which the isotopically-enriched, boron-containing compound is advantageously contained for subsequent dispensing use.
Abstract:
An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
Abstract:
Memory security technologies are described. An example processing device includes a processor core and a memory controller coupled to the processor core and a memory. The processor core can determine that an exit condition to transfer control of a resource for a processor core from a first virtual machine monitor (VMM) to a second VMM has occurred. The processor core can also determine whether a control virtual machine control structure (VMCS) link pointer is valid. The processor core can also determine whether a reason value corresponding to the control VMCS link pointer is set. The processor core can also determine whether the reason value is set to zero. The processor core can also determining whether an exception bit corresponding to a specific exception type of a reason value is set. The processor core can also transfer a control of the resource from the first VMM to the second VMM.