Abstract:
A magnetoresistive sensor element is provided, having a magnetoresistive layer system which, in top view, is at least regionally striated. The sensor element operates on the basis of the GMR effect and is constructed according to the spin valve principle, the striated layer system featuring a reference layer having a direction of magnetization substantially uninfluenced by a direction of an outer magnetic field acting on it. During operation, the sensor element provides a measuring signal which changes as a function of a measurement angle between the component of the field strength of the outer magnetic field lying in the plane of the layer system, and the direction of magnetization, and from which this measurement angle is able to be ascertained. In addition, observed in a top view of the striated layer system, the angle between the direction of magnetization in the absence of the outer magnetic field and the longitudinal direction of the striated layer system is set in such a way that in response to an influence of the outer magnetic field having a defined field strength, which is selected from a predefined work interval, the angle error of the layer system, as a function of this angle and the field strength, is minimal.
Abstract:
A method for manufacturing a diaphragm, on a semiconductor substrate, includes the method operations or tasks of a) providing a semiconductor substrate, b) producing trenches in the semiconductor substrate, webs made of semiconductor substrate remaining between the trenches, c) producing an oxide layer on the walls of the trenches with the aid of a thermal oxidation method, d) producing access openings in a cover layer produced in a preceding method operation or task on the semiconductor substrate, to expose the semiconductor substrate in the area of the webs, e) isotropic etching of the semiconductor substrate exposed in method operation or task d) using a method selective to the oxide layer and to the cover layer, at least one cavity being produced in the webs below the cover layer, which is laterally delimited by the oxide layer of at least one trench, and f) depositing a sealing layer to seal the access openings in the cover layer.
Abstract:
A micromechanical component includes a substrate that has a front side and a backside, the front side having a functional pattern, which functional pattern is electrically contacted to the backside in a contact region. The substrate has at least one contact hole in the contact region, which extends into the substrate, starting from the backside.
Abstract:
A magnetoresistive layer system including a layer sequence including at least two magnetic layers, a non-magnetic, electrically conductive intermediate layer being arranged between them; the electrical resistance of the layer system being changeable as a function of an external magnetic field acting on the layer system. At least one magnetically hard layer is integrated in the layer system, at least in certain areas, applying a magnetic field at least in the area of a boundary surface between the magnetic layers and the intermediate layer. The magnetoresistive layer system is suitable in particular for use in a GMR sensor element including coupled multilayers or in an AMR sensor element having a barberpole structure. In addition, the system includes a gradiometer including a plurality of such layer systems.
Abstract:
A GMR sensor element is proposed, having a rotationally symmetrical positioning of especially eight GMR resistor elements which are connected to each other to form two Wheatstone's full bridges. This GMR sensor element is especially suitable for use in an angle sensor for the detection of the absolute position of the camshaft or the crankshaft in a motor vehicle, particularly in the case of a camshaft-free engine having electrical or electrohydraulic valve timing, of a motor position of an electrically commutated motor, or of detection of a windshield wiper position, or in the steering angle sensor system in motor vehicles.
Abstract:
A layer structure for the electrical contacting of a semiconductor component having integrated circuit elements and integrated connecting lines for the circuit elements, which is suitable in particular for use in a chemically aggressive environment and at high temperatures, i.e., in so-called “harsh environments,” and is simple to implement. This layer structure includes at least one noble metal layer, in which at least one bonding island is formed, the noble metal layer being electrically insulated from the substrate of the semiconductor component by at least one dielectric layer, and having at least one ohmic contact between the noble metal layer and an integrated connecting line. The noble metal layer is applied directly on the ohmic contact layer.
Abstract:
A layer structure for the electrical contacting of a semiconductor component having integrated circuit elements and integrated connecting lines for the circuit elements, which is suitable in particular for use in a chemically aggressive environment and at high temperatures, i.e., in so-called “harsh environments,” and is simple to implement. This layer structure includes at least one noble metal layer, in which at least one bonding island is formed, the noble metal layer being electrically insulated from the substrate of the semiconductor component by at least one dielectric layer, and having at least one ohmic contact between the noble metal layer and an integrated connecting line. The noble metal layer is applied directly on the ohmic contact layer.
Abstract:
A magnetoresistive sensor element is provided, having a magnetoresistive layer system which, in top view, is at least regionally striated. The sensor element operates on the basis of the GMR effect and is constructed according to the spin valve principle, the striated layer system featuring a reference layer having a direction of magnetization substantially uninfluenced by a direction of an outer magnetic field acting on it. During operation, the sensor element provides a measuring signal which changes as a function of a measurement angle between the component of the field strength of the outer magnetic field lying in the plane of the layer system, and the direction of magnetization, and from which this measurement angle is able to be ascertained. In addition, observed in a top view of the striated layer system, the angle between the direction of magnetization in the absence of the outer magnetic field and the longitudinal direction of the striated layer system is set in such a way that in response to an influence of the outer magnetic field having a defined field strength, which is selected from a predefined work interval, the angle error of the layer system, as a function of this angle and the field strength, is minimal.
Abstract:
A simple to implement contacting variant makes it possible to create a reliable electrical connection between the sensor element and the evaluation electronics of a pressure sensor, including at least one media-resistant sensor element, evaluation electronics in the form of at least one additional component connected electrically to the sensor element, and a multipart housing, the sensor element being situated in a first housing area having at least one pressure connection, and the evaluation electronics being situated in a second sealed housing area which is separated from the first housing area by a separating wall. The electrical connection between the sensor element and the evaluation electronics is implemented in the form of media-resistant bonding wires which are guided from the first into the second housing area through the bonded joint area between the separating wall and an additional housing part.
Abstract:
A micromechanical component includes a substrate that has a front side and a backside, the front side having a functional pattern, which functional pattern is electrically contacted to the backside in a contact region. The substrate has at least one contact hole in the contact region, which extends into the substrate, starting from the backside.