Abstract:
Disclosed herein are nonwoven fibrous structures for use as body fluid acquisition/distribution elements in personal care products. Such structures comprise natural and/or synthetic fibers wherein the fibers have been consolidated by application thereto, and by cross-linking of, a certain type of cross-linkable, vinyl acetate-ethylene (VAE) emulsion copolymer latex binder. The VAE latex binder is one which also comprises an added organic acidulant such as citric acid. Consolidation of the structures with VAE-based binders to which the organic acidulant has been added imparts to the resulting structures the ability to lower the pH of body fluids such as urine passing through the structures. This effect, in turn, provides odor control and skin care benefits to the absorbent articles, e.g., diapers and adult incontinence products, using such structures as acquisition/distribution elements.
Abstract:
The present invention relates to a coating composition for fibrous substances containing 25 to 75 percent by weight of pigment, and 0.5 to 25 weight percent of a polymer comprising 1 to 15 percent by weight of one or more monomers having sterically hindered secondary amine groups and 10 to 40 weight percent of a carboxylic acid monomer. The coating is useful on fibrous and non-fibrous substrates on which liquid inks will be fixed. The non-ionic polymer becomes cationic when contacted by anionic inks, and the cationic nature of the coating provides the substrate with an excellent point of attachment for inks and dyes, resulting in bright, crisp printed images. The coating is especially useful for ink-jet printing on paper, paperboard, textiles, non-wovens, wood, and films.
Abstract:
Disclosed herein are nonwoven fibrous structures for use as body fluid acquisition/distribution elements in personal care products. Such structures comprise natural and/or synthetic fibers wherein the fibers have been consolidated by application thereto, and by cross-linking of, a certain type of cross-linkable, vinyl acetate-ethylene (VAE) emulsion copolymer latex binder. The VAE latex binder is one which also comprises an added organic acidulant such as citric acid. Consolidation of the structures with VAE-based binders to which the organic acidulant has been added imparts to the resulting structures the ability to lower the pH of body fluids such as urine passing through the structures. This effect, in turn, provides odor control and skin care benefits to the absorbent articles, e.g., diapers and adult incontinence products, using such structures as acquisition/distribution elements.
Abstract:
Disclosed are surfactant-stabilized latex emulsions which can be used as binders in paper coating compositions. Such latex emulsions comprise an interpolymer formed by emulsion polymerizing monomers selected from vinyl esters, e.g., vineyl acetate; ethylene; certain unsaturated mono- and di-carboxylic acid materials such as acrylic acid or maleic anhydride; and certain polyethylenically unsaturated cross-linking co-monomers such as diallyl phthalate. These latex emulsions are stabilized with surfactants which are substantially free of environmentally suspect alkyl phenol ethoxylates (APEs). The paper coating compositions containing latex emulsion binders of this type exhibit especially desirable coating strength as quantified by the Dry Pick Values (as defined herein) which such compositions provide.
Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer comprising repeat units derived from butyl acrylate, methyl methacrylate and amino functionalized alkyl acrylate or methacrylate or amino functionalized alkyl acrylamide or methacrylamide optionally including monomers such as vinyl acetate and/or vinyl acetate/ethylene. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with acid to make it water soluble. The binders are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like and retain their salt-sensitivity with or without divalent metal scavengers.
Abstract:
A solution with a salt-sensitive polymer binder for use in fibrous webs, where the binder contains a copolymer comprising repeat units derived from butyl acrylate, methyl methacrylate and amino functionalized alkyl acrylate or methacrylate or amino functionalized alkyl acrylamide or methacrylamide optionally including monomers such as vinyl acetate and/or vinyl acetate/ethylene. The binder solution is prepared by emulsion-polymerizing a copolymer and then neutralizing the copolymer with acid to make it water soluble. The binders are particularly suitable for strengthening nonwoven fibrous webs in disposable articles such as wet-wipes, personal care products, diapers, and the like and retain their salt-sensitivity with or without divalent metal scavengers.
Abstract:
The present invention relates to a coating composition for fibrous substrates made up of 0.5 to 25 percent by weight of a water-insoluble emulsion polymer comprising from greater than 0.4 to 3 mole percent of one or more cationic monomer units and at least 50 mole percent of at least one vinyl ester monomer; 25 to 75 percent by weight pigment; cationic surfactant; and water. The coating is useful on fibrous substrates on which liquid inks will be fixed. The cationic nature of the coating provides the substrate with an excellent point of attachment for anionic inks and dyes, resulting in bright, crisp printed images. The coating is especially useful for ink-jet printing on paper, paperboard, textiles, non-wovens, and wood.
Abstract:
Wallcoverings which include a nonwoven synthetic substrate and a water-based ground coating which is applied thereto. The ground coating includes emulsion polymer pigment binders and a mineral pigment composition. The ground coating provides the nonwoven substrate with superior printing and durability properties, enabling the production of wallcoverings which may be printed with a decorative design. The wallcoverings are desirable for environmental, health, and safety reasons.