摘要:
A counter-doped epitaxial silicon (doped opposite to the substrate type) is used to form the buried layer in a CMOS transistor, while maintaining an abrupt channel profile. Shallow source/drain junctions with abrupt source/drain profiles may be formed using raised (or elevated) source/drain design. The invention encompasses a transistor structure including a doped silicon substrate, and an oppositely-doped epitaxial silicon layer formed on the substrate. A gate is formed on the epitaxial layer, the gate defining a channel region in the epitaxial layer underneath the gate. A layer is formed on the epitaxial silicon layer on opposing sides of, and is electrically isolated from, the gate.
摘要:
One embodiment of the present invention is a method of simultaneously forming high-voltage (12) and low-voltage (10) devices on a single substrate (14), the method comprising: forming a thin oxide layer (18) on the substrate, the thin oxide layer having a desired thickness for a gate oxide for the low-voltage device; selectively forming a gate structure (30) for the high-voltage device, the thin oxide is situated between the gate structure and the substrate; and selectively thickening the thin oxide under the gate structure while keeping the thin oxide layer utilized for the low-voltage device at the desired thickness.
摘要:
A semiconductor device having high and low voltage transistors on the same chip. High voltage NMOS transistor 76 comprises a polysilicon gate 40 doped at a first dopant level. Low voltage NMOS transistor comprises a polysilicon gate 44 doped at a second dopant level. The second dopant level is higher than the first. High voltage PMOS transistor 84 comprises a polysilicon gate 48 doped at a third dopant level. Low voltage PMOS transistor comprises a polysilicon gate 52 doped at a fourth dopant level. The fourth dopant level is higher than the third.
摘要:
A raised source/drain transistor is provided having thin sidewall spacing insulators (54) adjacent the transistor gate (48). A first sidewall spacer (64) is disposed adjacent thin sidewall spacing insulator (54) and raised source/drain region (60). A second sidewall spacer (66) is formed at the interface between field insulating region (44) and raised source/drain region (60).
摘要:
A multiple recess isolation technology avoids stress induced defects while providing a substantially planar surface. A silicon substrate (10) is patterned and etched, creating active moat regions (18) and recesses (20a-b and 21a-b). the recesses are filled with oxide by growing a field oxide (40) in wide recessed regions (21) using a LOCOS process, while depositing a planarization field oxide (44) in narrow recessed regions (20). After etching the structure to obtain a planar surface, standard procedures are used to fabricate the active devices. The process uses a single photolithographic masking step and results in only a very small loss of the width electrically active regions.
摘要:
A CMOS device wherein the N-channel devices have n+ gates, and the P-channel devices have p+ gates. A TiN local interconnect system is used to connect the two types of gates, as well as providing connections to moat.
摘要:
Polysilicon gate insulated gate field effect transistors with threshold adjustment implants made after the gate oxide (156) and a split of the polysilicon gate (158) have been formed provides a shallow, tight dopant profile.
摘要:
A monolithic charge-coupled infrared imaging device (CCIRID) is fabricated on N-type HgCdTe. A native oxide layer on the semiconductor is used, in combination with ZnS to provide first level insulation. An opaque field plate over first level insulation is provided for signal channel definition. Second level insulation (ZnS) is substantially thicker than the first level, and is provided with a stepped or sloped geometry under the first level gates. Input and output diodes are provided with MIS guard rings to increase breakdown voltages.
摘要:
Assisting navigation of a first browser executing on a first data processing system is provided by navigating, responsive to a second browser executing on a second data processing system, to identify information to be displayed using the first browser on the first data processing system. An identifier is request to associate with the identified information and the identifier is dynamically generated responsive to the request for an identifier. The identifier is associated with the identified information to be displayed using the first browser such that the identified information may be retrieved using the identifier.
摘要:
A transistor (100) having a strip channel or channels (108) in which the current flow in is the lateral direction between source (110) and drain (112). The gate (116) is located on the sidewalls and, if desired, the top of the strip channel (108). In a preferred embodiment of the invention, a disposable gate process is used that allows the source (110) and drain (112) regions to be self-aligned to the gate (116).