Abstract:
The present invention includes a system for quickly and simply manufacturing semi-custom cabinetry utilizing a stapled on clamps. The stapled on clamp allows panels of the cabinet to quickly and securely join together, with significant load bearing ability. The clamp allows for different ways of discretely joining pieces together to create custom cabinetry during installation. The stapled on clamp can be used for toe box construction as either a single pin or a double pin.
Abstract:
The present invention includes a system for quickly and simply manufacturing semi-custom cabinetry utilizing a hidden pin joining system. The hidden pin joining system allows panels of the cabinet to quickly and securely join together, with significant load bearing ability. The different joining pin designs allow for different ways of discretely joining pieces together to create custom cabinetry during installation. The specially designed drill bits allow the system to work seamlessly. Using CAD/CAM machinery, the drill bits can cut stock pieces that can be taken to installation sites, and formed into custom cabinetry for kitchen, closets, or any other desired shelving units.
Abstract:
Various methods and devices are described for retaining a medical implant within a body cavity. According to one aspect, at least a portion of a medical implant is positioned within a body cavity, and a wall of the body cavity is re-shaped such that the re-shaped wall prevents migration of the medical implant out of the body cavity. The re-shaped body wall may form a tissue pocket, tunnel, or other barrier against migration of the implant.
Abstract:
The present disclosure describes intravascular systems that may be used for a variety of functions. The elements of the disclosed systems include at least one device body implanted within the vasculature. Electrodes on a lead and/or on the device body itself are used to direct electrical energy to neurological targets. These systems may additionally include one or more fluid reservoirs housing drugs or other agents to be delivered to tissue.
Abstract:
Disclosed are novel polymers derivatized with at least one —NOx group per 1200 atomic mass unit of the polymer. X is one or two. In one embodiment, the polymer is an S-nitrosylated polymer and is prepared by reacting a polythiolated polymer with a nitrosylating agent under conditions suitable for nitrosylating free thiol groups. The polymers of the present invention can be used to coat medical devices to deliver nitric oxide in vivo to treatment sites.
Abstract translation:公开了每1200个原子质量单位的聚合物衍生自至少一个-NO 2 x N基团的新型聚合物。 X是一两个。 在一个实施方案中,聚合物是S-亚硝基化的聚合物,并且通过使多硫醇化聚合物与亚硝酰化剂在适于亚硝酰化游离巯基的条件下反应来制备。 本发明的聚合物可用于涂覆医疗装置以将体内的一氧化氮输送到治疗部位。
Abstract:
A system for enabling the insertion and removal of an embolic protection device, for capturing and retaining embolic debris which may be created during the performance of a therapeutic interventional procedure in a stenosed or occluded region of a blood vessel. The system, in an embodiment thereof, enables the device to be compressed for insertion thereof through a patient's vasculature so as to cross the stenosis in a low profile, and to enable release of compression thereof for expansion and deployment of the device at a location distal to the interventional procedure site.
Abstract:
Various methods and devices are described for retaining a medical implant within a body cavity. According to one aspect, at least a portion of a medical implant is positioned within a body cavity, and a wall of the body cavity is re-shaped such that the re-shaped wall prevents migration of the medical implant out of the body cavity. The re-shaped body wall may form a tissue pocket, tunnel, or other barrier against migration of the implant.
Abstract:
A system for accessing the interior of a vertebral body or the intervertebral disc space above or below the vertebral body is disclosed. The system comprises a steerable cutting means for creating a path within or through the vertebral body to allow access for other devices to deliver a therapy, and may be housed within a flexible catheter shaft. The steerable cutting means may create a path to allow access to a device for removing tissue, and/or additional a devices for delivering a therapy, such as, for example, a filling material and/or a prosthesis. A method of accessing the interior of a vertebral body or the intervertebral disc space using the system, and a method of treatment of spinal disorders using the system are also disclosed.
Abstract:
A system for enabling the insertion and removal of an embolic protection device, for capturing and retaining embolic debris which may be created during the performance of a therapeutic interventional procedure in a stenosed or occluded region of a blood vessel. The system, in an embodiment thereof, is capable of enabling at least one operator to control the delivery and removal of an embolic protection device to a position in a patient's vasculature distal to an interventional procedure site, to enable the exchange of the delivery and recovery system. The system, in another embodiment thereof, includes a delivery system and a recovery system which are capable of enabling the delivery and recovery of an embolic protection device so as to maintain a clinically acceptable profile and flexibility through the patient's vasculature.