Abstract:
An EML assembly is provided that has and EAM and a DFB, with the DFB having an asymmetric ¼ wavelength phase shift positioned at a location that is in front of the center of the periodic structure of the DFB. In addition, the EML assembly has a tilted or bent waveguide that reduces reflections occurring at the front end facet, thereby enabling the EAM to produce a relatively high POUT level while also achieving reduced chirp and high single-mode yield in the DFB. By providing the EML assembly with a tilted or bent waveguide, the reflections at the front end facet are reduced without having to use an AR coating on the front end facet that has an extremely low reflectivity. By avoiding the need to use an AR coating on the front end facet that has an extremely low reflectivity, the AR coating that is used on the front end facet can be made using standard sputter deposition techniques to enable higher manufacturing yields to be achieved.
Abstract:
A tuneable laser assembly includes a substrate having formed thereon a plurality of tuneable lasers including distributed Bragg reflector (DBR) tuning sections. The lasers have respective emission wavelengths and tuning ranges such that the laser assembly can be tuned over a quasi-continuous predetermined wavelength range. The assembly also includes a plurality of waveguides coupled to the lasers to receive therefrom the respective emission wavelengths as well as an optical coupler coupled to the waveguides to receive thereby the emissions wavelengths from the lasers. An optical amplifier is coupled to the optical coupler to amplify the emission wavelengths of the lasers coupled via the optical coupler. The tuning sections of the DBR lasers have a length in the range of about 150-200 um and are of the same optical waveguide of the waveguides routing the emission wavelengths to said optical coupler. These DBR tuning sections having a grating strength (KL) less than about 0,5 and a high reflective (HR) coated back facet enhancing the external quantum efficiency from each said tuning sections. The lasers include active sections having a length in the range of about 250-300 um comprised of a high-gain/low-loss multi quantum well (MQW) material. The lasers have a total DBR array length of about 500 nm.
Abstract:
A semiconductor laser structure includes a substrate and an active region having at least one active laser layer. The active region is included in a ridge protruding from an exposed surface of the substrate. The ridge extends in the direction of the laser cavity and includes at least two opposed and electrically connected lateral extensions defining respective metal bonding pads distributed along the length of the laser cavity.
Abstract:
A tuneable laser assembly includes a substrate having formed thereon a plurality of tuneable lasers, waveguides, an optical coupler and an optical amplifier. The lasers have active sections and distributed Bragg reflector (DBR) tuning sections and are characterised by respective emission wavelengths and tuning ranges such that the laser assembly can be tuned over a quasi-continuous predetermined wavelength range. The DBR tuning sections have a length in the range of about 150-200 um, are of the same optical waveguide of the waveguides, a grating strength (KL) less than about 0,5 and a high reflective (HR) coated back facet enhancing the external quantum efficiency from each said tuning sections. The active sections have a length in the range of about 250-300 um comprised of a high-gain/low-loss multi quantum well (MQW) material. The lasers have a total DBR array length of about 500 um.
Abstract:
A laser module (1) comprises a Fabry-Perot cavity active element (2) with a facet (3) bearing an anti-reflection coating and an external cavity made by an optical fibre Bragg grating (5) with low reflectivity. This grating (5) presents a non-uniform profile of modulation of the refractive index, asymmetrical in the direction of the grating length, such as to give rise to a position of the equivalent mirror plane that is offset towards the end of the grating (5) that is closer to the active element (2).
Abstract:
A surface-emitting semiconductor laser device is provided that includes an edge-emitting laser formed in various layers of semiconductor material disposed on a semiconductor substrate, a polymer material disposed on the substrate laterally adjacent the layers in which the edge-emitting laser is formed, and a reflector formed in or on an angled side facet of the polymer material generally facing an exit end facet of the laser. Laser light passes out of the exit end facet propagates through the polymer material before being reflected by the reflector out of the device in a direction that is generally normal to the upper surface of the substrate.
Abstract:
A method of manufacturing a tuneable laser assembly including a substrate having formed thereon a plurality of tuneable lasers including Multi Quantum Well (MQW) active sections as well as distributed Bragg reflector (DBR) tuning sections. The lasers have respective emission wavelengths and tuning ranges such that the laser assembly can be tuned over a quasi-continuous predetermined wavelength range. The assembly also includes a plurality of passive waveguides coupled to the lasers to receive therefrom the respective emission wavelengths as well as an optical coupler coupled to the waveguides to receive via the waveguides the emissions wavelengths from the lasers. A Multi Quantum Well (MQW) amplifier coupled to the coupler amplifies the emission wavelengths coupled via the optical coupler. The method includes the steps of: using the same Multi-Quantum Well material for the Multi Quantum Well (MQW) sections of the tuneable lasers as well as for the Multi Quantum Well (MQW) amplifier, and using a common bulk material for the passive waveguides, the optical coupler and the DBR tuning sections of the lasers.
Abstract:
A method of manufacturing a tuneable laser assembly including a substrate having formed thereon a plurality of tuneable lasers including Multi Quantum Well (MQW) active sections as well as distributed Bragg reflector (DBR) tuning sections. The lasers have respective emission wavelengths and tuning ranges such that the laser assembly can be tuned over a quasi-continuous predetermined wavelength range. The assembly also includes a plurality of passive waveguides coupled to the lasers to receive therefrom the respective emission wavelengths as well as an optical coupler coupled to the waveguides to receive via the waveguides the emissions wavelengths from the lasers. A Multi Quantum Well (MQW) amplifier coupled to the coupler amplifies the emission wavelengths coupled via the optical coupler. The method includes the steps of: using the same Multi-Quantum Well material for the Multi Quantum Well (MQW) sections of the tuneable lasers as well as for the Multi Quantum Well (MQW) amplifier, and using a common bulk material for the passive waveguides, the optical coupler and the DBR tuning sections of the lasers.