Abstract:
The present invention relates to: a method for preparing a cut flower water retention agent; a cut flower water retention agent prepared thereby; and a cut flower container for accommodating the same, and the cut flower water retention agent can supply water and nutrients so as to maintain freshness for a long time without the wilting of cut flowers during the distribution and storage of the cut flowers, and is prepared to be superabsorbent so as to be used by being mixed with water, thereby having convenient use, enabling cut flowers to be safely transported and carried, and enabling a decrease in the commodity value of cut flowers to be prevented during the distribution thereof by extending the lifespan of the cut flowers.
Abstract:
A method of operating a data storage device includes programming non-fully programmed memory blocks at a point in time when a reference time elapses from a point in time when each of the memory blocks is physically erased, acquiring a first interval and a second interval, calculating a disturb index based on the first interval and the second interval, selecting a victim block for garbage collection based on the disturb index, and copying valid page data of the victim block into a free block. The first interval is defined by a point in time when each of the memory blocks is physically erased and a point in time when each of the memory blocks is fully programmed. The second interval is an interval during which a fully programmed state is maintained after a point in time when each of the memory blocks is fully programmed.
Abstract:
A lighting device may be provided that includes a heat sink which includes one surface and a receiving recess; a light emitting module which is disposed on the one surface of the heat sink and includes a substrate and a plurality of light sources disposed on the substrate, wherein the substrate includes a hole and a plurality of via-holes; a power controller which includes an electrode pin electrically connected to the light emitting module through the via hole; and aninsulating inner case which receives the power controller therein and is disposed in the receiving recess of the heat sink, wherein the light sources include an lighting emitting diode.
Abstract:
Provided is a method of operating a magnetic random access memory device comprising a switch structure and a magnetoresistance structure. According to the method, current variation depending on the direction of the current can be reduced by controlling a gate voltage of the switch structure when supplying current to write data to the magnetoresistance structure.
Abstract:
A conductive paste including a combination of: a conductive powder, a metallic glass, and a dispersing agent represented by the following Chemical Formula 1 R1-L1-(OR2)n—(OR3)m—O-L2-COOH. Chemical Formula 1 In Chemical Formula 1, R1 is a substituted or unsubstituted C5 to C30 branched alkyl group, R2 and R3 are each independently a substituted or unsubstituted C2 to C5 alkylene group, L1 is a substituted or unsubstituted C6 to C30 arylene group, L2 is a single bond or a C1 to C4 alkylene group, n and m are each independently integers ranging from 0 to about 30, and 3≦n+m≦30.
Abstract:
An intercooler assembly for a vehicle. The intercooler assembly may include an inflow portion on which an inflow hose is mounted, the inflow portion including a buffering space to temporarily accumulate an in-flowing air, a first cooling portion fluidly connected to the inflow portion, an outflow portion on which an outflow hose is mounted, a second cooling portion fluidly connected to the outflow portion, and a turnaround portion fluidly connecting the first cooling portion and the second cooling portion, wherein the turnaround portion changes a flow direction of the in-flowing air and guides the in-flowing air toward the outflow portion so as to discharge the air.
Abstract:
A method of operating a data storage device includes programming non-fully programmed memory blocks at a point in time when a reference time elapses from a point in time when each of the memory blocks is physically erased, acquiring a first interval and a second interval, calculating a disturb index based on the first interval and the second interval, selecting a victim block for garbage collection based on the disturb index, and copying valid page data of the victim block into a free block. The first interval is defined by a point in time when each of the memory blocks is physically erased and a point in time when each of the memory blocks is fully programmed. The second interval is an interval during which a fully programmed state is maintained after a point in time when each of the memory blocks is fully programmed.
Abstract:
A method of operating a data storage device includes programming non-fully programmed memory blocks at a point in time when a reference time elapses from a point in time when each of the memory blocks is physically erased, acquiring a first interval and a second interval, calculating a disturb index based on the first interval and the second interval, selecting a victim block for garbage collection based on the disturb index, and copying valid page data of the victim block into a free block. The first interval is defined by a point in time when each of the memory blocks is physically erased and a point in time when each of the memory blocks is fully programmed. The second interval is an interval during which a fully programmed state is maintained after a point in time when each of the memory blocks is fully programmed.
Abstract:
A conductive paste including a combination of: a conductive powder, a metallic glass, and a dispersing agent represented by the following Chemical Formula 1 R1-L1-(OR2)n—(OR3)m—O-L2-COOH. Chemical Formula 1 In Chemical Formula 1, R1 is a substituted or unsubstituted C5 to C30 branched alkyl group, R2 and R3 are each independently a substituted or unsubstituted C2 to C5 alkylene group, L1 is a substituted or unsubstituted C6 to C30 arylene group, L2 is a single bond or a C1 to C4 alkylene group, n and m are each independently integers ranging from 0 to about 30, and 3≦n+m≦30.
Abstract:
A method of operating a data storage device includes programming non-fully programmed memory blocks at a point in time when a reference time elapses from a point in time when each of the memory blocks is physically erased, acquiring a first interval and a second interval, calculating a disturb index based on the first interval and the second interval, selecting a victim block for garbage collection based on the disturb index, and copying valid page data of the victim block into a free block. The first interval is defined by a point in time when each of the memory blocks is physically erased and a point in time when each of the memory blocks is fully programmed. The second interval is an interval during which a fully programmed state is maintained after a point in time when each of the memory blocks is fully programmed.