摘要:
A plasma etch process for forming a high aspect ratio contact opening through a silicon oxide layer is disclosed. The silicon oxide layer is plasma etched using etch gases that include at least one organic fluorocarbon gas. At least one etch gas is used that includes one or more nitrogen-comprising gases to deposit a surface polymeric material during the etching for maintaining a masking layer over the silicon oxide layer. The method of the invention achieves a complete and anistropic etching of a contact opening having a high aspect ratio and the desired dimensions.
摘要:
A method for forming an etched feature in a substrate such as an insulator layer of a semiconductor wafer is provided. In one embodiment, the method includes initially etching a substrate layer using a photoresist or other masking layer to form the etched feature (e.g., opening) to a selected depth, and depositing a self-aligning mask layer for a continued etch of the formed feature. In another embodiment of the method, the self-aligned mask is deposited onto a substrate having an etched opening or other feature, to protect the upper surface and corners of the substrate and sidewalls of the feature while the bottom portion of the opening is cleaned or material at the bottom portion of the opening is removed. The present methods utilize the height difference between the bottom portion of the feature and the surface of the substrate to selectively deposit a self-aligning mask layer relative to a pre-formed opening or other feature, for example, to extend an opening to a depth that an original photomask thickness cannot support.
摘要:
A method of high aspect ratio contact etching a substantially vertical contact hole in an oxide layer using a hard photoresist mask is described. The oxide layer is deposited on an underlying substrate. A plasma etching gas is formed from a carbon source gas. Dopants are mixed into the gas. The doped plasma etching gas etches a substantially vertical contact hole through the oxide layer by doping carbon chain polymers formed along the sidewalls of the contact holes during the etching process into a conductive state. The conductive state of the carbon chain polymers reduces the charge buildup along sidewalls to prevent twisting of the contact holes by bleeding off the charge and ensuring proper alignment with active area landing regions. The etching stops at the underlying substrate.
摘要:
A plasma etch process for forming a high aspect ratio contact opening through a silicon oxide layer is disclosed. The silicon oxide layer is plasma etched using etch gases that include at least one organic fluorocarbon gas. At least one etch gas is used that includes one or more nitrogen-comprising gases to deposit a surface polymeric material during the etching for maintaining a masking layer over the silicon oxide layer. The method of the invention achieves a complete and anistropic etching of a contact opening having a high aspect ratio and the desired dimensions.
摘要:
A method of high aspect ratio contact etching a substantially vertical contact hole in an oxide layer using a hard photoresist mask is described. The oxide layer is deposited on an underlying substrate. A plasma etching gas is formed from a carbon source gas. Dopants are mixed into the gas. The doped plasma etching gas etches a substantially vertical contact hole through the oxide layer by doping carbon chain polymers formed along the sidewalls of the contact holes during the etching process into a conductive state. The conductive state of the carbon chain polymers reduces the charge buildup along sidewalls to prevent twisting of the contact holes by bleeding off the charge and ensuring proper alignment with active area landing regions. The etching stops at the underlying substrate.
摘要:
A method of high aspect ratio contact etching a substantially vertical contact hole in an oxide layer using a hard photoresist mask is described. The oxide layer is deposited on an underlying substrate. A plasma etching gas is formed from a carbon source gas. Dopants are mixed into the gas. The doped plasma etching gas etches a substantially vertical contact hole through the oxide layer by doping carbon chain polymers formed along the sidewalls of the contact holes during the etching process into a conductive state. The conductive state of the carbon chain polymers reduces the charge buildup along sidewalls to prevent twisting of the contact holes by bleeding off the charge and ensuring proper alignment with active area landing regions. The etching stops at the underlying substrate.
摘要:
A method of high aspect ratio contact etching a substantially vertical contact hole in an oxide layer using a hard photoresist mask is described. The oxide layer is deposited on an underlying substrate. A plasma etching gas is formed from a carbon source gas. Dopants are mixed into the gas. The doped plasma etching gas etches a substantially vertical contact hole through the oxide layer by doping carbon chain polymers formed along the sidewalls of the contact holes during the etching process into a conductive state. The conductive state of the carbon chain polymers reduces the charge buildup along sidewalls to prevent twisting of the contact holes by bleeding off the charge and ensuring proper alignment with active area landing regions. The etching stops at the underlying substrate.
摘要:
A method of high aspect ratio contact etching a substantially vertical contact hole in an oxide layer using a hard photoresist mask is described. The oxide layer is deposited on an underlying substrate. A plasma etching gas is formed from a carbon source gas. Dopants are mixed into the gas. The doped plasma etching gas etches a substantially vertical contact hole through the oxide layer by doping carbon chain polymers formed along the sidewalls of the contact holes during the etching process into a conductive state. The conductive state of the carbon chain polymers reduces the charge buildup along sidewalls to prevent twisting of the contact holes by bleeding off the charge and ensuring proper alignment with active area landing regions. The etching stops at the underlying substrate.
摘要:
A method for forming an etched feature in a substrate such as an insulator layer of a semiconductor wafer is provided. In one embodiment, the method includes initially etching a substrate layer using a photoresist or other masking layer to form the etched feature (e.g., opening) to a selected depth, and depositing a self-aligning mask layer for a continued etch of the formed feature. In another embodiment of the method, the self-aligned mask is deposited onto a substrate having an etched opening or other feature, to protect the upper surface and corners of the substrate and sidewalls of the feature while the bottom portion of the opening is cleaned or material at the bottom portion of the opening is removed. The present methods utilize the height difference between the bottom portion of the feature and the surface of the substrate to selectively deposit a self-aligning mask layer relative to a pre-formed opening or other feature, for example, to extend an opening to a depth that an original photomask thickness cannot support.
摘要:
This invention includes methods of forming openings into dielectric material. In one implementation, an opening is partially etched through dielectric material, with such opening comprising a lowest point and opposing sidewalls of the dielectric material. At least respective portions of the opposing sidewalls within the opening are lined with an electrically conductive material. With such electrically conductive material over said respective portions within the opening, plasma etching is conducted into and through the lowest point of the dielectric material of the opening to extend the opening deeper within the dielectric material. Other aspects and implementations are contemplated.