摘要:
This invention includes methods of forming openings into dielectric material. In one implementation, an opening is partially etched through dielectric material, with such opening comprising a lowest point and opposing sidewalls of the dielectric material. At least respective portions of the opposing sidewalls within the opening are lined with an electrically conductive material. With such electrically conductive material over said respective portions within the opening, plasma etching is conducted into and through the lowest point of the dielectric material of the opening to extend the opening deeper within the dielectric material. Other aspects and implementations are contemplated.
摘要:
Capacitors and methods of forming capacitors are described. According to one implementation, a capacitor opening is formed over a substrate node location. Electrically conductive material is subsequently formed within the capacitor opening and makes an electrical connection with the node location. A protuberant insulative structure is formed within the capacitor opening and includes a lateral outer surface at least a portion of which is supported by and extends elevationally below adjacent conductive material. First and second capacitor plates and a dielectric layer therebetween are formed within the capacitor opening and supported by the protuberant structure. In one aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure substantially, if not completely filling in the void. In another aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure only partially filling in the void to provide a tubular structure.
摘要:
Capacitors and methods of forming capacitors are described. According to one implementation, a capacitor opening is formed over a substrate node location. Electrically conductive material is subsequently formed within the capacitor opening and makes an electrical connection with the node location. A protuberant insulative structure is formed within the capacitor opening and includes a lateral outer surface at least a portion of which is supported by and extends elevationally below adjacent conductive material. First and second capacitor plates and a dielectric layer therebetween are formed within the capacitor opening and supported by the protuberant structure. In one aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure substantially, if not completely filling in the void. In another aspect, the conductive material is formed to occupy less than all of the capacitor opening and to leave a void therewithin, with the protuberant structure only partially filling in the void to provide a tubular structure.
摘要:
Semiconductor processing methods of forming conductive projections and methods of increasing alignment tolerances are described. In one implementation, a conductive projection is formed over a substrate surface area and includes an upper surface and a side surface joined therewith to define a corner region. The corner region of the conductive projection is subsequently beveled to increase an alignment tolerance relative thereto. In another implementation, a conductive plug is formed over a substrate node location between a pair of conductive lines and has an uppermost surface. Material of the conductive plug is unevenly removed to define a second uppermost surface, at least a, portion of which is disposed elevationally higher than a conductive line. In one aspect, conductive plug material can be removed by facet etching the conductive plug. In another aspect, conductive plug material is unevenly doped with dopant, and conductive plug material containing greater concentrations of dopant is etched at a greater rate than plug material containing lower concentrations of dopant.
摘要:
Semiconductor processing methods of forming conductive projections and methods of increasing alignment tolerances are described. In one implementation, a conductive projection is formed over a substrate surface area and includes an upper surface and a side surface joined therewith to define a corner region. The corner region of the conductive projection is subsequently beveled to increase an alignment tolerance relative thereto. In another implementation, a conductive plug is formed over a substrate node location between a pair of conductive lines and has an uppermost surface. Material of the conductive plug is unevenly removed to define a second uppermost surface, at least a portion of which is disposed elevationally higher than a conductive line. In one aspect, conductive plug material can be removed by facet etching the conductive plug. In another aspect, conductive plug material is unevenly doped with dopant, and conductive plug material containing greater concentrations of dopant is etched at a greater rate than plug material containing lower concentrations of dopant.
摘要:
The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.
摘要:
The invention includes methods for selectively etching insulative material supports relative to conductive material. The invention can include methods for selectively etching silicon nitride relative to metal nitride. The metal nitride can be in the form of containers over a semiconductor substrate, with such containers having upwardly-extending openings with lateral widths of less than or equal to about 4000 angstroms; and the silicon nitride can be in the form of a layer extending between the containers. The selective etching can comprise exposure of at least some of the silicon nitride and the containers to Cl2 to remove the exposed silicon nitride, while not removing at least the majority of the metal nitride from the containers. In subsequent processing, the containers can be incorporated into capacitors.
摘要:
The invention includes semiconductor constructions, and also includes methods of forming pluralities of capacitor devices. An exemplary method of the invention includes forming conductive storage node material within openings in an insulative material to form conductive containers. A retaining structure lattice is formed in physical contact with at least some of the containers, and subsequently the insulative material is removed to expose outer surfaces of the containers. The retaining structure can alleviate toppling or other loss of structural integrity of the container structures. The electrically conductive containers correspond to first capacitor electrodes. After the outer sidewalls of the containers are exposed, dielectric material is formed within the containers and along the exposed outer sidewalls. Subsequently, a second capacitor electrode is formed over the dielectric material. The first and second capacitor electrodes, together with the dielectric material, form a plurality of capacitor devices.
摘要:
A method of forming an MIM capacitor with low leakage and high capacitance is disclosed. A layer of titanium nitride (TiN) or boron-doped titanium nitride (TiBN) material is formed as a lower electrode over an optional capacitance layer of hemispherical grained polysilicon (HSG). Prior to the dielectric formation, the first layer may be optionally subjected to a nitridization or oxidation process. A dielectric layer of, for example, aluminum oxide (Al2O3) formed by atomic layer deposition (ALD) is fabricated over the first layer and after the optional nitridization or oxidation process. An upper electrode of titanium nitride (TiN) or boron-doped titanium nitride (TiBN) is formed over the dielectric layer.
摘要翻译:公开了一种形成具有低泄漏和高电容的MIM电容器的方法。 在半球状晶粒多晶硅(HSG)的可选电容层上形成氮化钛(TiN)或硼掺杂氮化钛(TiBN)材料层作为下电极。 在电介质形成之前,第一层可以任选地进行氮化或氧化过程。 通过原子层沉积(ALD)形成的例如氧化铝(Al 2 O 3 N)的电介质层在第一层上和在任选的氮化之后制造,或 氧化过程。 在电介质层上形成氮化钛(TiN)或硼掺杂氮化钛(TiBN)的上电极。
摘要:
The invention includes a method of depositing a noble metal. A substrate is provided. The substrate has a first region and a second region. The first and second regions are exposed to a mixture comprising a precursor of a noble metal and an oxidant. During the exposure, a layer containing the noble metal is selectively deposited onto the first region relative to the second region. In particular applications, the first region can comprise borophosphosilicate glass, and the second region can comprise either aluminum oxide or doped non-oxidized silicon. The invention also includes capacitor constructions and methods of forming capacitor constructions.