Abstract:
Methods for producing a semiconductor layer and for producing a photoelectric conversion device, semiconductor raw material are disclosed. An embodiment of the method for producing a semiconductor layer includes: forming a film containing a metal element and an oxygen element; generating oxygen gas by heating the film; and forming a semiconductor layer containing a metal chalcogenide from the film by allowing the metal element to react with a chalcogen element. Another embodiment of the method includes forming a lower film containing a metal element; forming an upper film, which contains the metal element and a substance that contains oxygen, on the lower film; generating oxygen gas by heating the substance; and forming a semiconductor layer containing a metal chalcogenide from the lower film and the upper film by allowing a chalcogen element to react with the metal element in the lower film and the upper film.
Abstract:
A photoelectric conversion device is disclosed. The photoelectric conversion device includes an electrode layer and a semiconductor layer. The semiconductor layer is located on the electrode layer and contains a group I-III-VI compound. In the semiconductor layer, an atomic ratio of a group I-B element to a group III-B element decreases from one principal surface side of the semiconductor layer on the electrode layer side to a central portion in a thickness direction and increases from the central portion to another principal surface side on a side opposite to the electrode layer.
Abstract:
A first resistive film is arranged such that one edge thereof is connected to a first terminal, and an edge that is opposite to the aforementioned edge is connected to a second terminal. A second resistive film is arranged with a gap between it and the first resistive film such that one edge thereof is connected to a third terminal. A voltage generating unit applies a predetermined first bias voltage and a predetermined second bias voltage to the first terminal and the second terminal, respectively. A voltage detection unit detects a panel voltage that occurs at the third terminal. A current detection unit detects a panel current that flows through a path including the first terminal, the first resistive film, and the second terminal. A computation unit determines the coordinates touched by the user, based upon the values of the panel voltage and the panel current.
Abstract:
A photoelectric conversion device is disclosed. The photoelectric conversion device includes an electrode layer and a semiconductor layer. The semiconductor layer is located on the electrode layer and contains a group I-III-VI compound. In the semiconductor layer, an atomic ratio of a group I-B element to a group III-B element decreases from one principal surface side of the semiconductor layer on the electrode layer side to a central portion in a thickness direction and increases from the central portion to another principal surface side on a side opposite to the electrode layer.
Abstract:
Coil units equipped with primary coils having the same specification are provided in a power feeding module. Coil-unit intermeshing recess sections are formed on a printed circuit board to match each of the coil units. Pads for joining together with electrodes formed on the coil units are formed on the bottom faces of each of the coil-unit intermeshing recess sections. A plurality of coil units can be mounted onto the printed circuit board easily, by fitting each of the coil units into each of the coil-unit intermeshing recess sections and joining them together, which will enable manufacturing efficiency to be improved.
Abstract:
A D/A converter of the current switching type has a first current mirror circuit that D/A converts the upper (n−m) digits in n bit data to be converted and a weighting current circuit block or a second current mirror circuit that D/A converts the lower m digits in the data, by cascade connecting the weighting current circuit block or the second current mirror circuit at the upstream or at the downstream side of an output side transistor other than the output side transistors of the first current mirror circuit. In this manner, current flowing through the output side transistor flows as diverting currents to the weighting current circuit block or the second current mirror circuit corresponding to the digit weights of the lower m digits, and the diverting currents are taken out at the outputs of the D/A conversion circuit as analog converted currents of the lower m digits.
Abstract:
A current mirror type D/A converter circuit is constructed with transistor cells each including a MOS transistor, a gate region of which MOS transistor has folded stripe configuration in a plan view thereof, or a current flowing direction in a channel of which is a folded stripe in plan view.
Abstract:
A D/A converter circuit includes a first current mirror circuit and a second current mirror circuit. The first current mirror circuit has a plurality of output side transistors provided correspondingly to digits of data to be converted and generates en analog current by obtaining, in at least one of the output side transistors, a current corresponding to the weight of the digit of the data being converted. The second current mirror circuit is connected on an upstream or downstream side of the output side transistors and corresponding to a lower digit of the data. An analog current is generated with the second current mirror circuit by obtaining a current corresponding to a weight of a digit that is less than 1.
Abstract:
The output current from respective output terminals of a drive circuit (driver IC) of an organic EL display panel to respective column pins or data lines is sequentially selected by sequentially scanning a plurality of switch circuits by a switch scan circuit. The resultant output currents are converted into voltage values by resistors selected by a selector. Further, the converted voltage values sequentially generated according to the scanning of the switch scan circuit are outputted externally of the IC.
Abstract:
A driver IC (4) and a current driver circuit (40) are shared by a first organic EL panel (2) and a second organic EL panel (3). Therefore, not like conventional cases, the current driving circuit (40) on a side not selected is not necessarily in a standby state, and power consumption can be reduced. In a case where the first and second organic EL panels are passive matrix type, a first diode is provided between each column line of the first and the second organic EL panels and corresponding each terminal pin so as to prevent a reverse flow.