Abstract:
Increasing standoff height for surface mount components mounted to a laminate by image screening at least one standoff structure in a footprint area on the laminate surface. The standoff structure may comprise a filled epoxy and curing agents and may be cured by thermal treatment or by exposure to actinic radiation. The use of legend ink as a standoff structure offers a method and a structure for improving component standoff height without additional processing operations or cost.
Abstract:
A method for triggering a partial discharge acquisition from an energy generating device is described. The method includes generating a power source sensed signal by sensing electromagnetic energy output from the energy generating device, producing an present flux density trace from the power source sensed signal, and determining a lack of variation in timing from at least one of the present flux density trace and a comparison between the present flux density trace and at least one prior flux density trace.
Abstract:
A cooling system for an electronic component on a component carrier is provided. The system includes a frame, a spray manifold, and a sealing member. The frame has an opening and is connectable to the component carrier so that an annular area is defined between the opening and the electronic component. The spray manifold is sealed over the opening to define a spray area over a back surface of the electronic component. The spray manifold sprays a cooling fluid on the back surface. The sealing member seals the annular region so that input/output connectors on the component carrier are isolated from the cooling fluid.
Abstract:
Optical cubes and optical cube assemblies for directing optical beams are provided. The optical cubes are optically transparent modules that can be adapted to reflect, transmit, and/or partially reflect and transmit optical beams. The optical cubes may include bi-direction or multi-direction beam directing elements for directing optical beams. The optical cube assemblies may include flexible chip assemblies attached to optical cubes. The chip assemblies may include vertical cavity surface-emitting lasers for emitting optical beams or receivers for receiving optical beams mounted on a flexible and electrical interconnect mounting assembly.