Abstract:
Disclosed is a semiconductor device (10) which comprises a glass substrate (12), a lower electrode layer (14), an n-type doped polycrystalline silicon semiconductor layer (16), a low-temperature insulating film (20) in which openings (22, 23) that serve as nuclei for growth of a nanowire (32) are formed, the nanowire (32) that is grown over the low-temperature insulating film (20) and has a core-shell structure, an insulating layer (50) that surrounds the nanowire (32), and an upper electrode layer (52). The nanowire (32) comprises an n-type GaAs core layer and a p-type GaAs shell layer. Alternatively, the nanowire can be formed as a nanowire having a quantum well structure, and InAs that can allow reduction of the process temperature can be used for the nanowire.
Abstract:
An extension piece portion is provided at a lower end portion of a screen plate so as to extend from the lower end portion, beyond a gas-passing through hole, to an oil pocket portion. An oil guide portion is provided at respective gas-hitting-side face portions of the screen plate and the extension piece portion so as to guide oil trapped at the above-described face portions into the oil pocket portion. Accordingly, it can be prevented that part of the oil in the middle of dropping down into the oil pocket portion from the screen plate is carried away by the gas flow passing through the gas-passing through hole, so that the efficiency of oil trap can be improved.
Abstract:
A medium holding apparatus includes: a medium holding conveyance device which has a plurality of suction grooves for suctioning a sheet-shaped medium, and conveys the medium in a prescribed direction while holding the medium on a medium holding surface; and a suction pressure generating device which is connected to the plurality of suction grooves, and generates suction pressure in each of the suction grooves, wherein: the plurality of suction grooves include a leading end suction groove provided at a position where a leading end region of the medium is held, and the leading end suction groove has a structure so as to be separated from other suction grooves of the plurality of suction grooves, and is connected to the suction pressure generating device via a flow channel which is not connected to the other suction grooves.
Abstract:
The medium holding apparatus includes: a medium holding device having a plurality of suction grooves through which a sheet-shaped medium is held by suction; and a suction pressure generating device which is connected to the suction grooves and generates a suction pressure in each of the suction grooves, wherein the suction pressure in one of the suction grooves that holds a first end portion of the sheet-shaped medium is made stronger than the suction pressure in one of the suction grooves that holds a central portion of the sheet-shaped medium.
Abstract:
Provided is an oil-in-water emulsified cosmetic composition having a high UV-protective effect and also having an excellent long-term stability and an excellent feeling upon application. The oil-in-water emulsified cosmetic composition is characterized by containing a zinc oxide powder (A) having an average particle diameter of 0.1 to 1 μm, an average particle thickness of 0.01 to 0.2 μm, and an average aspect ratio of 3 or more and a polymer (B) selected from the group consisting of a polyacrylamide compound, a polyacrylic acid, and salts thereof.
Abstract:
Provided is an emulsified cosmetic composition having an excellent UV-protective effect, an excellent transparent feeling, an excellent feeling upon application, and an excellent long-term stability. The emulsified cosmetic composition is characterized by containing a powder which is produced by subjecting a zinc oxide powder (A) having an average particle diameter of 0.1 to 1 μm, an average particle thickness of 0.01 to 0.2 μm, and an average aspect ratio of 3 or more to surface treatment with a silane or silazane compound having a C1-20 alkyl or fluoroalkyl group and having reactivity with an inorganic oxide.
Abstract:
To provide a solar cell enabling practical electric power to be obtained and excitons to be effectively collected, and a manufacturing method of the solar cell. A nanowire solar cell 1 comprises: a semiconductor substrate 2; a plurality of nanowire semiconductors 4 and 5 forming pn junctions; a transparent insulating material 6 filled in the gap between the plurality of nanowire semiconductors 4 and 5; an electrode 7 covering the end portion of the plurality of nanowire semiconductors 4 and 5; and a passivation layer 10 provided between the semiconductor 5 and the transparent insulating material 6 and between the semiconductor 5 and the electrode 7.
Abstract:
The image forming apparatus includes: a recording medium conveyance device which includes air flow channels and a recording medium holding region on which a recording medium is held, a surface of the recording medium holding region having openings in connection with the air flow channels, the recording medium conveyance device conveying the recording medium in a prescribed conveyance direction while holding the recording medium on the recording medium holding region by suction; a suction device which performs air suction through the openings to perform holding of the recording medium on the recording medium holding region by suction when the recording medium is disposed on the recording medium holding region; an image forming device which performs image formation onto the recording medium held on the recording medium holding region by the suction device; a discharging device which performs air discharge through the openings when no recording medium is disposed on the recording medium holding region; and an air switching device which performs switching between the air suction and the air discharge.
Abstract:
The present invention provides a drawing device. A drawing component includes a stage and a drawing head. The drawing head draws on a recording medium supported by the stage. A moving component relatively moves the stage and the drawing head. A position detection component detects a relative position of the stage and the drawing head. An error detection component detects an abnormal state in which an abnormal drawing is performed on the recording medium. When the abnormal state is detected, a controller stops drawing with the drawing head and returns the relative position from the stop position to the position of the drawing start side, so that drawing may be resumed from a position within a predetermined range including the stop position.