摘要:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device may include a light-emitting structure, an electrode, an ohmic layer, an electrode layer, an adhesion layer, and a channel layer. The light-emitting structure may include a compound semiconductor layer. The electrode may be disposed on the light-emitting structure. The ohmic layer may be disposed under the light-emitting structure. The electrode layer may include a reflective metal under the ohmic layer. The adhesion layer may be disposed under the electrode layer. The channel layer may be disposed along a bottom edge of the light-emitting structure.
摘要:
A bonding pad for an electrode is in contact with p-type gallium nitride-based semiconductor material that includes aluminum. The bonding pad may also includes one or more metals selected from the group consisting of palladium, platinum, nickel and gold. The bonding pad can be used to attach a bonding wire to the p-electrode in a semiconductor device, such as a light-emitting diode or a laser diode without causing degradation of the light-transmission and ohmic properties of the electrode. The bonding pad may be formed of substantially the same material as an electrode in making an ohmic contact with n-type gallium nitride-based semiconductor material (n-electrode). This allows the bonding pad and the n-electrode to be formed simultaneously when manufacturing a gallium nitride-based light-emitting device which substantially reduces the cost to manufacture the device.
摘要:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device may include a light-emitting structure, an electrode, an ohmic layer, an electrode layer, an adhesion layer, and a channel layer. The light-emitting structure may include a compound semiconductor layer. The electrode may be disposed on the light-emitting structure. The ohmic layer may be disposed under the light-emitting structure. The electrode layer may include a reflective metal under the ohmic layer. The adhesion layer may be disposed under the electrode layer. The channel layer may be disposed along a bottom edge of the light-emitting structure.
摘要:
An improved p-type electrode for a p-type gallium-nitride based semiconductor material is disclosed that includes at least one layer of indium-tin-oxide. The electrode can include the indium-tin-oxide layer(s) such that at least one of the indium-tin-oxide layers is in contact with the p-type semiconductor layer. Alternatively, the electrode can further include a first electrode layer in contact with the p-type semiconductor layer. In this example, the indium-tin-oxide layer(s) is over the first electrode layer. The first electrode layer includes at least one metal selected from the group consisting of nickel oxide, molybdenum oxide, ruthenium oxide and zinc oxide, and/or at least one non-oxidizing metal.
摘要:
An integrated light-emitting device includes multiple p-n diodes integrated monolithically on an insulating substrate. The p-n diodes are of monolithic semiconductor materials over the single substrate. The p-n diodes can be all light-emitting diodes or a combination of light-emitting and ESD-protection diodes. The p-n diodes may have at least one beveled sidewall to enhance light extraction out of the light-emitting diodes. A method for producing such integrated light-emitting device and a method for producing such p-n diode that includes at least one beveled sidewall are also disclosed.
摘要:
A vertical cavity surface emitting laser (VCSEL) has a top mirror structure with a surface, a light generation region, and a bottom mirror structure for reflecting light toward said top mirror structure. The VCSEL has a semiconductor portion with a surface that is disposed substantially planar with respect to the surface of the top mirror structure. At least one aperture-defining layer having an isolatable material is disposed in at least one of the bottom mirror structure and the top mirror structure. The aperture-defining layer has a conducting region, an insulating region having an aperture-defining surface for defining the conducting region, and a single trench adjacent to the insulating region for use in generating the insulating region. The trench having a continuous geometry for reducing the parasitic capacitance of the VCSEL.
摘要:
A semiconductor light-emitting device is provided. The semiconductor light-emitting device may include a light-emitting structure, an electrode, an ohmic layer, an electrode layer, an adhesion layer, and a channel layer. The light-emitting structure may include a compound semiconductor layer. The electrode may be disposed on the light-emitting structure. The ohmic layer may be disposed under the light-emitting structure. The electrode layer may include a reflective metal under the ohmic layer. The adhesion layer may be disposed under the electrode layer. The channel layer may be disposed along a bottom edge of the light-emitting structure.
摘要:
A semiconductor device includes a substrate having a first major surface; a semiconductor device structure over the first surface of the substrate, the device structure comprising an n-type semiconductor layer, and a p-type semiconductor layer over the n-type semiconductor layer; a p-side electrode having a first and a second surface, wherein the first surface is in electrical contact with the p-type semiconductor layer; and a p-side bonding pad over the p-side electrode. Preferably, the semiconductor device further comprises an n-side bonding pad over an n-type semiconductor layer. The p-side and n-side bonding pads each independently includes a gold layer as its top layer and a single or multiple layers of a diffusion barrier under the top gold layer. Optionally, one or more metal layers are further included under the diffusion barrier. Typically, the p-side bonding pad is formed on the p-side electrode. The n-side bonding pad typically is formed on the n-type semiconductor layer, and forms a good ohmic contact with the n-type semiconductor layer.
摘要:
A semiconductor device includes: a substrate; an n-type semiconductor layer over the substrate, the n-type semiconductor layer having a planar top surface; a p-type semiconductor layer extending over a major portion of the n-type semiconductor layer and not extending over an exposed region of the n-type semiconductor layer located adjacent to at least one edge of the planar top surface of the n-type semiconductor layer; a first bonding pad provided on the exposed region of the n-type semiconductor layer; an electrode layer extending over the p-type semiconductor layer; and a second bonding pad on the electrode layer, the bonding pad including a central region for securing an electrical interconnect, and at least one finger-like region protruding from the central region, the finger-like region having a length extending away from the central region and a width that is substantially less than the length. A method for producing a semiconductor device also is described.
摘要:
An improved electrode for a p-type gallium nitride based semiconductor material is disclosed that includes a layer of an oxidized metal and a first and a second layer of a metallic material. The electrode is formed by depositing three or more metallic layers over the p-type semiconductor layer such that at least one metallic layer is in contact with the p-type semiconductor layer. At least two of the metallic layers are then subjected to an annealing treatment in the presence of oxygen to oxidize at least one of the metallic layers to form a metal oxide. The electrodes provide good ohmic contacts to p-type gallium nitride-based semiconductor materials and, thus, lower the operating voltage of gallium nitride-based semiconductor devices.