Abstract:
A method for etching features of different aspect ratios in a conductive layer is provided. The method comprises: depositing over the conductive layer with an aspect ratio dependent deposition; etching features into the conductive layer with an aspect ratio dependent etching of the conductive layer; and repeating the depositing and the etching at least once.
Abstract:
A method for etching features into an etch layer through a patterned mask in a plasma processing chamber is provided. A main etch gas is flowed into the plasma processing chamber. The main etch gas is formed into a main etch plasma. A bias greater than 600 volts is provided. The bias is pulsed at a frequency between 1 Hz and 20 kHz with a duty cycle less than 45%.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a substrate including first and second junction regions, a word line buried in the substrate, a bit line provided over the word line to cross the word line, a first contact provided between the substrate and the bit line and electrically connected to the first junction region, and a second contact provided between the bit lines and electrically connected to the second junction region. An overlapping area of a lower portion of the second contact may be greater than an overlapping area of an upper portion of the second contact with respect to the second junction region.
Abstract:
A method for etching a conductive layer through a mask with wider and narrower features is provided. A steady state etch gas is flowed. A steady state RF power is provided to form a plasma from the etch gas. A pulsed bias voltage is provided during the steady state etch gas flow, wherein the pulsed bias voltage has a frequency between 1 to 10,000 Hz. Wider and narrower features are etched into the conductive layer using the plasma formed from the etch gas.
Abstract:
A method for selectively etching a high-k dielectric layer with respect to a polysilicon material is provided. The high-k dielectric layer is partially removed by Ar sputtering, and then the high-k dielectric layer is etched using an etching gas comprising BCl3. The high-k dielectric layer and the polysilicon material may be formed on a substrate. In order to partially remove the high-k dielectric layer, a sputtering gas containing Ar is provided into an etch chamber in which the substrate is placed, a plasma is generated from the sputtering gas, and then the sputtering gas is stopped. In order to etch the high-k dielectric layer, the etching gas is provided into the etch chamber, a plasma is generated from the etching gas, and then the etching gas is stopped.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include storage node pads disposed adjacent to each other between word lines but spaced apart from each other by an isolation pattern. Accordingly, it is possible to prevent a bridge problem from being caused by a mask misalignment. This enables to improve reliability of the semiconductor device.
Abstract:
A method for etching features of different aspect ratios in a tungsten containing layer is provided. An etch gas is provided containing a tungsten etch component and a deposition component. A plasma is formed from the provided etch gas. A tungsten containing layer patterned with wide and narrow features is etched with the provided plasma.
Abstract:
A method for etching features of different aspect ratios in a conductive layer is provided. The method comprises: depositing over the conductive layer with an aspect ratio dependent deposition; etching features into the conductive layer with an aspect ratio dependent etching of the conductive layer; and repeating the depositing and the etching at least once.
Abstract:
A method for etching features into a silicon based etch layer through a patterned hard mask in a plasma processing chamber is provided. A silicon sputtering is provided to sputter silicon from the silicon based etch layer onto sidewalls of the patterned hard mask to form sidewalls on the patterned hard mask. The etch layer is etched through the patterned hard mask.
Abstract:
A method for selectively etching a high-k dielectric layer with respect to a polysilicon material is provided. The high-k dielectric layer is partially removed by Ar sputtering, and then the high-k dielectric layer is etched using an etching gas comprising BCl3. The high-k dielectric layer and the polysilicon material may be formed on a substrate. In order to partially remove the high-k dielectric layer, a sputtering gas containing Ar is provided into an etch chamber in which the substrate is placed, a plasma is generated from the sputtering gas, and then the sputtering gas is stopped. In order to etch the high-k dielectric layer, the etching gas is provided into the etch chamber, a plasma is generated from the etching gas, and then the etching gas is stopped.