Abstract:
Disclosed is a photo-electrode for a dye-sensitized solar cell comprising a conductive substrate; a light absorbing porous film comprising nanoparticles of a first metal oxide, which is formed on the conductive substrate; a light scattering porous film comprising hollow spherical agglomerates of nanoparticles of a second metal oxide, which is formed on the light absorbing porous film; and a photosensitive dye adsorbed on the surface of the light absorbing metal oxide nanoparticles as well as on the surface of the hollow spherical agglomerates of the light scattering porous film.
Abstract:
Disclosed herein is an antireflective photocatalyst composition including a titanium dioxide-based photocatalyst, a binder, water, and alcohol, and a substrate using the composition. The antireflective photocatalyst composition is advantageous in that, when it is applied to a glass substrate, such as a glass antireflective film for a solar cell or a glass illuminator, it can prevent incident light energy from scattering and improve optical transmissivity, and in that it decomposes pollutants due to the dual action of harmful gas decomposition and self-purification, which are specific characteristics of a photocatalyst.
Abstract:
Disclosed is a photo-electrode for a dye-sensitized solar cell comprising a conductive substrate; a meso-porous metal oxide thin film formed on the surface of the conductive substrate; a porous film formed on the meso-porous metal oxide thin film and comprising metal oxide nanoparticles; and a photosensitive dye adsorbed on the surface of the porous film; and a process for preparation thereof.
Abstract:
This invention is related to the manufacturing method of ferroelectric capacitor, which can be applied to the memory cell of FRAM (Ferroelectric Random Access Memory). Fabrication of ferroelectric capacitor comprising the steps of: coating a first PZT sol-gel solution on a RuO.sub.X electrode to form a first PZT layer; baking the first PZT layer; annealing the first PZT layer to produce a seed layer with a perovskite structure; coating a second PZT sol-gel solution on the seed layer to form a second PZT layer; baking the second PZT layer; and annealing the second PZT layer to form a PZT film with a perovskite structure. The ferroelectric capacitor not only has a lower leakage current level and a higher degree of remanent polarization than the conventional capacitor, but also has almost the same leakage current level as an existing Pt/PZT/Pt capacitor.
Abstract:
An organometallic zirconium precursor, represented by following formula: L.sub.x .multidot.Zr(THD).sub.4 �I! wherein L is an electron donor ligand selected from the group consisting of NR.sub.3 (R.dbd.H, CH.sub.3) gas and Cl.sub.2 gas; THD denotes 2,2',6,6'-tetramethyl-3,5-heptanedione; and x is in the range of 0.3 to 1.5 with the proviso that L is NR.sub.3 or in the range of 0.5 to 2 with the proviso that L is Cl.sub.2, is prepared by flowing a gas phase electron donor into a bubbler containing bis (2,2',6,6'-tetramethyl-3,5-heptanedione)Zr at a predetermined temperature, to synthesize, in-situ, an adduct. The precursor exhibits a remarkable improvement in volatility, and in stability at the vaporization point. Lead-zirconium-titanium thin films prepared from the precursor, display superior reproducibility and reliability.
Abstract:
An electrochromic device includes a first electrode, a second electrode disposed opposite the first electrode, a porous electrochromic layer disposed on the first electrode or the second electrode, and an electrolyte disposed between the first electrode and the second electrode. The porous electrochromic layer includes different sized nanoparticle clusters, and each nanoparticle cluster includes a plurality of nanoparticles and an electrochromic material.
Abstract:
An electrochromic device includes a first electrode, a second electrode disposed opposite the first electrode, a porous electrochromic layer disposed on the first electrode or the second electrode, and an electrolyte disposed between the first electrode and the second electrode. The porous electrochromic layer includes different sized nanoparticle clusters, and each nanoparticle cluster includes a plurality of nanoparticles and an electrochromic material.
Abstract:
An organometallic precursor of a formula M(L)2 for use in formation of metal oxide thin films, in which M is a group IV metal ion having a charge of +4 and L is a tridentate ligand having a charge of −2, the ligand being represented by the following formula (I): wherein each of R1 and R2, independently, is a linear or branched C1-8 alkyl group; and R3 is a linear or branched C1-8 alkylene group. Also disclosed is a chemical vapor deposition method wherein a metal oxide thin film is formed on a substrate using the organometallic precursor. The precursor exhibits excellent volatility, thermal property and hydrolytic stability and is particularly suitable for the deposition of a multi-component metal oxide thin film containing a group IV metal such as titanium.
Abstract:
PZT ferroelectric thin films for capacitors comprise a combination of a donor dopant and an acceptor dopant in a total amount of about 0.1 to 8 mole percent of PZT, or Sc alone in an amount of about 0.1 to 5 mole percent. Nb or Ta is employed as a donor dopant, while Sc, Mg or Zn can be used as an acceptor dopant. The presence of a single Sc acceptor dopant, or both an acceptor dopant and a donor dopant, results in increased endurance. Fatigue cycles are increased on the order of about 10.sup.5 relative to dopant-free films. Doping with a single Sc acceptor dopant, or both an acceptor dopant and a donor dopant, reduces coercive field, allowing PZT films to switch at relatively low voltages. PZT thin films of a pure perovskite phase are obtained in which a pyrochlore phase is completely excluded. Pt may be used as an electrode material. The leakage current of PZT films doped with both the acceptor and donor elements are similar to the leakage current level of pure PZT thin films.
Abstract:
Disclosed is a photo-electrode for a dye-sensitized solar cell comprising a conductive substrate; a meso-porous metal oxide thin film formed on the surface of the conductive substrate; a porous film formed on the meso-porous metal oxide thin film and comprising metal oxide nanoparticles; and a photosensitive dye adsorbed on the surface of the porous film; and a process for preparation thereof.