Abstract:
A data programming method of a semiconductor memory device is provided which includes randomizing write data using a randomization method selected from among a plurality of randomization methods according to whether the write data is programmed in one of a plurality of nonvolatile memories; and programming the randomized write data in at least one of the plurality of nonvolatile memories, wherein the plurality of nonvolatile memories has different types from one another.
Abstract:
Disclosed are an embedded semiconductor device including a phase changeable random access memory element and a method of fabricating the same. A semiconductor chip including a main memory element and a supplementary memory element is integrated on a substrate, intrinsic chip data are obtained by electrically testing the semiconductor chip, and the semiconductor chip is packaged. The intrinsic chip data are written into the supplementary memory element before the packaging of the semiconductor chip, and a memory layer of the supplementary memory element is formed of a material exhibiting an improved data retention property under thermal environmental conditions as compared with a memory layer of the main memory element.
Abstract:
The inventive concepts provide a method for forming a hard mask pattern. The method includes forming a hard mask layer on an etch target layer disposed on a substrate, forming a photoresist pattern having an opening exposing one region of the hard mask layer, performing an oxygen ion implantation process on the one region using the photoresist pattern as a mask to form an oxidized portion in the one region, and patterning the hard mask layer using the oxidized portion as an etch mask.
Abstract:
The inventive concepts provide a semiconductor memory device including variable resistance memory elements. The semiconductor memory device may include a first bit line disposed at a first height from a semiconductor substrate, a second bit line disposed at a second height, which is different from the first height, from the semiconductor substrate, a first variable resistance memory element connected to the first bit line, and a second variable resistance memory element connected to the second bit line. The first and second variable resistance memory elements may be disposed at substantially the same height from the semiconductor substrate.
Abstract:
A variable resistance memory device includes different variable resistance patterns on different memory regions of a substrate. The different variable resistance patterns may be at different heights from the substrate and may have different intrinsic properties. The different variable resistance patterns may at least partially comprise separate memory cells that are each configured to function as a non-volatile memory cell or a random access memory cell, respectively.
Abstract:
The inventive concepts provide a method for forming a hard mask pattern. The method includes forming a hard mask layer on an etch target layer disposed on a substrate, forming a photoresist pattern having an opening exposing one region of the hard mask layer, performing an oxygen ion implantation process on the one region using the photoresist pattern as a mask to form an oxidized portion in the one region, and patterning the hard mask layer using the oxidized portion as an etch mask.
Abstract:
A semiconductor device includes a memory cell array, which further includes an array of first magnetic memory cells and an array of second magnetic memory cells. Each of the first magnetic memory cells includes a first magnetic tunnel junction structure having a reversible resistance state, and each of the second magnetic memory cells includes a second magnetic tunnel junction structure having a one-time programmable (OTP) resistance state.
Abstract:
A magnetic memory device includes a substrate, a landing pad on the substrate, first and second magnetic tunnel junction patterns disposed on the interlayer insulating layer and spaced apart from the landing pad when viewed from a plan view, and an interconnection structure electrically connecting a top surface of the second magnetic tunnel junction pattern to the landing pad. A distance between the landing pad and the first magnetic tunnel junction pattern is greater than a distance between the first and second magnetic tunnel junction patterns, and a distance between the landing pad and the second magnetic tunnel junction pattern is greater than the distance between the first and second magnetic tunnel junction patterns, when viewed from a plan view.
Abstract:
A variable resistance memory device includes different variable resistance patterns on different memory regions of a substrate. The different variable resistance patterns may be at different heights from the substrate and may have different intrinsic properties. The different variable resistance patterns may at least partially comprise separate memory cells that are each configured to function as a non-volatile memory cell or a random access memory cell, respectively.
Abstract:
The inventive concepts provide a method for forming a hard mask pattern. The method includes forming a hard mask layer on an etch target layer disposed on a substrate, forming a photoresist pattern having an opening exposing one region of the hard mask layer, performing an oxygen ion implantation process on the one region using the photoresist pattern as a mask to form an oxidized portion in the one region, and patterning the hard mask layer using the oxidized portion as an etch mask.