Abstract:
A liquid feed containing methanol, carbon monoxide, an alkyl iodide and a solvent is contacted with a supported rhodium catalyst to produce acetic acid at a temperature of 140.degree.-250.degree. C. and a pressure of 15-60 kg/cm.sup.2 G with a partial pressure of carbon monoxide of 7-30 kg/cm.sup.2 while maintaining (a) the water concentration of the product solution in the range of 0.5-10% by weight and (b) the carbonylation degree C.sub.r, defined in the specification, of the solution within the reactor at 0.15 or more. The solvent may be a carboxylic acid or a carboxylic acid ester.
Abstract:
A catalyst for hydrotreating a heavy hydrocarbon oil comprises a carrier which is a calcined composite of a mixture of a clay mineral consisting mainly of magnesium silicate having a double-chain structure and a pseudoboehmite which shows a powder X-ray diffraction spectrum obtained by applying a CuK.sub..alpha. ray such that the half value width of the peak on the (020) plane is between about 0.8.degree. and 4.0.degree. and the intensity of said peak is between 1.2 and 8.0 times as high as that at 2.theta.=10.degree.. At least one catalytic metal component is composited with the carrier, the metal of the catalytic metal component being selected from the group consisting of metals belonging to Groups VB, VIB, VIII and IB of the Periodic Table. Disclosed also are a method of preparing such a catalyst, and a process for the hydrotreatment of heavy hydrocarbon oils containing asphaltenes and heavy metals.
Abstract:
A partition plate for multiple-stage adsorption separator includes a planar body member having opposing external surfaces and a peripheral edge with conduits providing fluid communication between the opposing surfaces and different points on the peripheral edge. Each of the opposing surfaces is provided with a peripheral rim and covered with a perforated plate whereby an open chamber is defined between the body member and a perforated plate at each of the external faces.
Abstract:
An adsorbent is charged into a horizontal type packed column having a multiplicity of packed vessels each of which is composed of a partition plate and a cylindrical body and which are connected through the partition plates, from an opening formed on the upper wall of each cylindrical body. Then, each opening is closed tightly with a detachable plug cover. The partition plate is provided with a first fluid passage through which a fluid is passed in the direction of the axis of the cylindrical body and a second fluid passage which is in communication with the first fluid passage, which extends toward the peripheral wall of the cylindrical body and which opens at the cylindrical body. This apparatus is suitable for use as a multiple-stage adsorption separator directed to a simulated moving-bed system.
Abstract:
Heavy hydrocarbon oils are converted into light hydrocarbon oils by two-stage process wherein, in the first stage, a heavy hydrocarbon oil is subjected to thermal cracking conditions and, in the second stage, the product of the thermal cracking is subjected to a hydrotreatment in the presence of a specific catalyst having a large pore volume in pores with diameters of 200-400 .ANG.. The hydrotreatment is carried out so that the product oil may have a toluene insoluble content of 0.5 wt % or less.
Abstract:
A catalyst for hydrotreating a heavy hydrocarbon oil comprises a carrier which is a calcined composite of a mixture of a clay mineral consisting mainly of magnesium silicate having a double-chain structure and a pseudoboehmite which shows a powder X-ray diffraction spectrum obtained by applying a CuK.sub..alpha. ray such that the half value width of the peak on the (020) plane is between about 0.8.degree. and 4.0.degree. and the intensity of said peak is between 1.2 and 8.0 times as high as that at 2.theta.=10.degree.. At least one catalytic metal component is composited with the carrier, the metal of the catalytic metal component being selected from the group consisting of metals belonging to Groups VB, VIB, VIII and IB of the Periodic Table. Disclosed also are a method of preparing such a catalyst, and a process for the hydrotreatment of heavy hydrocarbon oils containing asphaltenes and heavy metals.
Abstract:
A process for the production of a vanadium compound from carbonaceous residues containing vanadium, which includes the steps of: (a) combusting the carbonaceous residues at a temperature of 500-690° C. in an oxygen-containing gas to form vanadium-containing combustion residues; (b) heating the vanadium-containing combustion residues at a temperature T in ° C. under an oxygen partial pressure of at most T in kPa wherein T and P meet with the following conditions: log10(P)=−3.45×10−3×T+2.21 500≦T≦1300 to obtain a solid product containing less than 5% by weight of carbon and vanadium at least 80% of which is tetravalent vanadium oxide; (c) selectively leach tetravalent vanadium ion with sulfuring acid at pH in the range of 1.5-4; (d) separating a liquid phase from the leached mixture; (e) adding an alkaline substance to the liquid phase to adjust the pH thereof in the range of 4.5-7.5 and to selectively precipitate vanadium ion as a tetravalent vanadium compound; and (f) separating the precipitates.
Abstract:
A selector valve used for distributing and combining process flow. This valve comprises an open-ended cylindrical casing, a valve seat secured to the casing, an inlet hole extending coaxially with the casing through the valve seat, a plurality of outlet holes extending through the valve seat and arranged in a circle concentrical with the casing, a valve body fitted in the casing and rotatable about its axis, a U-shaped passage formed in the valve body such that its one end opens at a position coinciding with the inlet hole and its other end opens at a position meeting the circle, a spring provided within the casing for urging the valve body toward the valve seat so that the valve body is maintained in pressure contact with the valve seat, a driving mechanism for rotating the valve body through a desired angle so that the inlet hole can be in fluid communication with selected one of the outlet holes through the U-shaped passage, an annular groove formed on the surface of the valve body to define an annular, close space between the valve seat and the valve body at a position inside of the circle and a discharge hole extending through the valve seat at such a position as to be in fluid communication with the space.
Abstract:
A method of separating 2,6-diisopropylnaphthalene from a mixture containing 2,6-diisopropylnaphthalene and structural isomers thereof including the 2,7-isomer is disclosed, wherein the mixture is first subjected to a selective adsorption and desorption treatment using a zeolite absorbent capable of adsorbing the 2,7-isomer to obtain a first extract containing the sorbed 2,7-isomer and a first raffinate containing non-sorbed isomers including the 2,6-isomer, the 2,6-isomer being thereafter separated from the first raffinate.
Abstract:
A catalyst for hydrotreating a heavy hydrocarbon oil containing asphaltenes comprises a porous carrier composed of one or more inorganic oxides of at least one element selected from among those of Groups II, III and IV of the Periodic Table, and at least one catalytic metal component composited with the carrier. The metal of the catalytic metal component is selected from among those of Groups VB, VIB, VIII and IB of the Periodic Table. The catalyst contains about 1 to 30% by weight of such catalytic metal component and has the following pore characteristics with regard to its pores having a diameter of 75 .ANG. or more: an average pore diameter APD of about 180 to 500 .ANG., a total pore volume PV, expressed in cc/g, being equal to or greater than a value X ##EQU1## the volume of pores with a diameter of about 180 to 500 .ANG. being at least about 0.2 cc/g, the volume of pores with a diameter of at least 1,500 .ANG. being not greater than about 0.03 cc/g, and a total surface area being at least about 60 m.sup.2 /g. The catalyst has an average catalyst diameter ACD, expressed in millimeters, of not greater than a value of the formula, ACD=(APD/100).sup.0.5. Disclosed also are a method of preparing such a catalyst, and a process for hydrotreating a heavy hydrocarbon oil containing asphaltenes in the presence of such a catalyst.