Abstract:
Systems and methods are disclosed for partitioning data for storage in a non-volatile memory (“NVM”), such as flash memory. In some embodiments, a priority may be assigned to data being stored, and the data may be logically partitioned based on the priority. For example, a file system may identify a logical address within a first predetermined range for higher priority data and within a second predetermined range for lower priority data, such using a union file system. Using the logical address, a NVM driver can determine the priority of data being stored and can process (e.g., encode) the data based on the priority. The NVM driver can store an identifier in the NVM along with the data, and the identifier can indicate the processing techniques used on the associated data.
Abstract:
Systems and methods are provided for storing data to or reading data from a non-volatile memory (“NVM”), such as flash memory, using a metadata redundancy scheme. In some embodiments, an electronic device, which includes an NVM, may also include a memory interface for controlling access to the NVM. The memory interface may receive requests to write user data to the NVM. The user data from each request may be associated with metadata, such as a logical address, flags, or other data. In response to a write request, the NVM interface may store the user data and its associated metadata in a first memory location (e.g., page), and may store a redundant copy of the metadata in a second memory location. This way, even if the first memory location becomes inaccessible, the memory interface can still recover the metadata from the backup copy stored in the second memory location.
Abstract:
Systems and methods are provided for storing data to or reading data from a non-volatile memory (“NVM”), such as flash memory, using a metadata redundancy scheme. In some embodiments, an electronic device, which includes an NVM, may also include a memory interface for controlling access to the NVM. The memory interface may receive requests to write user data to the NVM. The user data from each request may be associated with metadata, such as a logical address, flags, or other data. In response to a write request, the NVM interface may store the user data and its associated metadata in a first memory location (e.g., page), and may store a redundant copy of the metadata in a second memory location. This way, even if the first memory location becomes inaccessible, the memory interface can still recover the metadata from the backup copy stored in the second memory location.
Abstract:
Systems and methods are provided for improved communications in a nonvolatile memory (“NVM”) system. The system can toggle between multiple communications channels to provide point-to-point communications between a host device and NVM dies included in the system. The host device can toggle between multiple communications channels that extend to one or more memory controllers of the system, and the memory controllers can toggle between multiple communications channels that extend to the NVM dies. Power islands may be incorporated into the system to electrically isolate system components associated with inactive communications channels.
Abstract:
Systems and methods are disclosed for efficient buffering for a system having non-volatile memory (“NVM”). In some embodiments, a control circuitry of a system can use heuristics to determine whether to perform buffering of one or more write commands received from a file system. In other embodiments, the control circuitry can minimize read energy and buffering overhead by efficiently re-ordering write commands in a queue along page-aligned boundaries of a buffer. In further embodiments, the control circuitry can optimally combine write commands from a buffer with write commands from a queue. After combining the commands, the control circuitry can dispatch the commands in a single transaction.
Abstract:
Systems and methods are disclosed for configuring a non-volatile memory (“NVM”). In some embodiments, each block of the NVM can include a block table-of-contents (“TOC”), which can be encoded (e.g., run-length encoded) and dynamically-sized. Thus, as user data is being programmed to a block, the size of a block TOC can be concurrently recalculated and increased only if necessary. In some embodiments, the NVM interface can use a weave sequence stored in the context information and at least one weave sequence associated with each page of a block to determine whether to replay across the pages of the block after system boot-up.
Abstract:
Systems and methods are disclosed for configuring a non-volatile memory (“NVM”). In some embodiments, each block of the NVM can include a block table-of-contents (“TOC”), which can be encoded (e.g., run-length encoded) and dynamically-sized. Thus, as user data is being programmed to a block, the size of a block TOC can be concurrently recalculated and increased only if necessary. In some embodiments, the NVM interface can use a weave sequence stored in the context information and at least one weave sequence associated with each page of a block to determine whether to replay across the pages of the block after system boot-up.
Abstract:
Systems and methods are disclosed for mount-time reconciliation of data availability. During system boot-up, a non-volatile memory (“NVM”) driver can be enumerated, and an NVM driver mapping can be obtained. The NVM driver mapping can include the actual availability of LBAs in the NVM. A file system can then be mounted, and a file system allocation state can be generated. The file system allocation state can indicate the file system's view of the availability of LBAs. Subsequently, data availability reconciliation can be performed. That is, the file system allocation state and the NVM driver mapping can be overlaid and compared with one another in order to expose any discrepancies.
Abstract:
Systems and methods are disclosed for generating efficient reads for a system having non-volatile memory (“NVM”). A read command can be separated by a host processor of the system into two phases: a) transmitting a command to a storage processor of the system, where the command is associated with one or more logical addresses, and b) generating data transfer information. The host processor can generate the data transfer information while the storage processor is processing the command from the host processor. Once the data transfer information has been generated and data has been read from the NVM, the data can be transferred.
Abstract:
Multipage preparation commands for non-volatile memory systems are disclosed. The multipage preparation commands supply data that can be used to prepare a non-volatile memory device for forthcoming multipage program operations. A host controller can use the commands ahead of a multipage program operation to optimize usage of a multipage program command. The non-volatile memory device can use the commands to configure the non-volatile memory in preparation for a subsequent operation, such as changing a command order or using the most optimized command set for the subsequent operation.