摘要:
Embodiments described herein generally provide a method and apparatus to form semiconductor devices. Specifically, embodiments describe an apparatus and methods of forming channels in sub-5 nm node FinFETS. The method provides for various processing steps to deposit a dielectric layer over a substrate. The method continues by etching a trench in the dielectric layer, depositing a silicon layer within the trench, depositing a buffer layer on top of the silicon layer in the trench, removing a portion of the buffer layer to form a planar surface, etching the buffer layer into a v-shape, and depositing a channel layer on top of the v-shaped buffer layer. The v-shaped buffer layer advantageously negates facet formation and provides for an InGaAs fin-channel with uniform distribution of indium and gallium throughout the channel.
摘要:
The present disclosure generally relate to methods of processing a substrate in an epitaxy chamber. The method includes exposing a substrate having one or more fins to a group IV-containing precursor and a surfactant containing antimony to form an epitaxial film over sidewalls of the one or more fin structures, wherein the surfactant containing antimony is introduced into the epitaxy chamber before epitaxial growth of the epitaxial film, and a molar ratio of the surfactant containing antimony to the group IV-containing precursor is about 0.0001 to about 10.
摘要:
Embodiments described herein generally relate to improved methods and solutions for cleaning a substrate prior to epitaxial growth of Group III-V channel materials. A first processing gas, which includes a noble gas and a hydrogen source, is used to remove the native oxide layer from the substrate surface. A second processing gas, Ar/Cl2/H2, is then used to create a reactive surface layer on the substrate surface. Finally, a hydrogen bake with a third processing gas, which includes a hydrogen source and an arsine source, is used to remove the reactive layer from the substrate surface.
摘要:
Methods of removing copper residue from interior surfaces of an etch process chamber are described. A plasma treatment using halogen-containing precursors transforms the copper residue into halogen-copper complexes. Plasma-excited inert gases are used to desorb the halogen-copper complexes. In this way, the copper residue is removed from the interior surfaces of the etch process chamber.
摘要:
A method for forming a group III-V semiconductor channel region in a transistor is provided herein. The method includes exposing a substrate including an oxide layer to a first plasma to treat the oxide layer, exposing the treated oxide layer to a second plasma to convert the oxide layer to an evaporable layer, evaporating the evaporable layer to expose a group III-V semiconductor material surface, and exposing the group III-V semiconductor material surface to an oxygen containing gas to oxidize the group III-V semiconductor material. The processes may be repeated until a recessed depth having a predetermined depth is formed. A group III-V semiconductor channel is then formed in the predetermined recessed depth. The control of the height of the group III-V semiconductor channel is improved.
摘要:
A method for cleaning a substrate, such as a silicon substrate, a silicon-germanium substrate, or other silicon-containing substrate is disclosed. The method includes exposing the substrate to a first plasma configured to attack a sub-oxide on the substrate. The method also includes exposing the substrate to a second plasma configured to attack the native oxide on the substrate. The method further includes exposing the substrate to a gas containing at least one of molecular chlorine or a chlorine compound. The gas may be configured to remove at least some of the remaining native oxide and sub-oxide. After the cleaning process, the substrate may be further processed. Further processing steps may include, for example, an epitaxial growth process. An epitaxial growth process performed on a substrate cleaned according to the methods disclosed herein will exhibit few defects.
摘要:
Embodiments disclosed herein generally relate to methods for controlling substrate outgassing such that hazardous gasses are eliminated from a surface of a substrate after a III-V epitaxial growth process or an etch clean process, and prior to additional processing. An oxygen containing gas is flowed to a substrate in a load lock chamber, and subsequently a non-reactive gas is flowed to the substrate in the load lock chamber. As such, hazardous gases and outgassing residuals are decreased and/or removed from the substrate such that further processing may be performed.
摘要:
Implementations described herein generally provide a method of processing a substrate. Specifically, the methods described are used for cleaning and etching source/drain regions on a silicon substrate in preparation for precise Group IV source/drain growth in semiconductor devices. Benefits of this disclosure include precise fin size control in devices, such as 10 nm FinFET devices, and increased overall device yield. The method of integrated clean and recess includes establishing a low pressure processing environment in the processing volume, and maintaining the low pressure processing environment while flowing a first gas over a substrate in a processing volume, depositing a salt on the substrate, heating the processing volume to greater than 90° C., purging the processing volume with a second inert gas, and recessing a source/drain region disposed on the substrate.
摘要:
Implementations disclosed herein relate to methods for controlling substrate outgassing. In one implementation, the method includes removing oxides from an exposed surface of a substrate in an inductively coupled plasma chamber, forming an epitaxial layer on the exposed surface of the substrate in an epitaxial deposition chamber, and performing an outgassing control of the substrate by subjecting the substrate to a first plasma formed from a first etch precursor in the inductively coupled plasma chamber at a first chamber pressure, wherein the first etch precursor comprises a hydrogen-containing precursor, a chlorine-containing precursor, and an inert gas, and subjecting the substrate to a second plasma formed from a second etch precursor in the inductively coupled plasma chamber at a second chamber pressure that is higher than the first chamber pressure, wherein the second etch precursor comprises a hydrogen-containing precursor and an inert gas.
摘要:
A method of forming at least one metal or metal alloy feature in an integrated circuit is provided. In one embodiment, the method includes providing a material stack including at least an etch mask located on a blanker layer of metal or metal alloy. Exposed portions of the blanket layer of metal or metal alloy that are not protected by the etch mask are removed utilizing an etch comprising a plasma that forms a polymeric compound and/or complex which protects a portion of the blanket layer of metal or metal alloy located directly beneath the etch mask during the etch.