Abstract:
Methods and apparatus for processing substrates are provided herein. In some embodiments, an apparatus includes a process kit, the process kit comprising a first ring to support a substrate proximate a peripheral edge of the substrate; a second ring disposed about the first ring; and a path formed between the first and second rings that allows the first ring to rotate with respect to the second ring, wherein the path substantially prevents light from travelling between a first volume disposed below the first and second rings and a second volume disposed above the first and second rings.
Abstract:
Embodiments of the invention generally relate to a support ring to support a substrate in a process chamber. In one embodiment, the support ring comprises an inner ring, an outer ring connecting to an outer perimeter of the inner ring through a flat portion, an edge lip extending radially inwardly from an inner perimeter of the inner ring to form a supporting ledge to support the substrate, and a substrate support formed on a top surface of the edge lip. The substrate support may include multiple projections extending upwardly and perpendicularly from a top surface of the edge lip, or multiple U-shaped clips securable to an edge portion of the edge lip. The substrate support thermally disconnects the substrate from the edge lip to prevent heat loss through the edge lip, resulting in an improved temperature profile across the substrate with a minimum edge temperature gradient.
Abstract:
Embodiments of apparatus for providing radiant energy in the form of electromagnetic radiation are provided herein. In some embodiments a radiation source for electromagnetic radiation includes a tubular body formed from a material transparent to electromagnetic radiation; a filament disposed within the tubular body; and a reflective coating disposed on a portion of the tubular body to form a reflective portion, wherein the reflective portion is configured to minimize reflection of electromagnetic radiation emanating from the filament during use back to the filament.
Abstract:
Methods and apparatus are provided for reducing the thermal signal noise in process chambers using a non-contact temperature sensing device to measure the temperature of a component in the process chamber. In some embodiments, a susceptor for supporting a substrate in a process chamber includes a first surface comprising a substrate support surface; and a second surface opposite the first surface, wherein a portion of the second surface comprises a feature to absorb incident radiant energy.
Abstract:
Apparatus for processing a substrate are provided herein. In some embodiments, a lamphead for use in substrate processing includes a monolithic member having a contoured surface; a plurality of reflector cavities disposed in the contoured surface, wherein each reflector cavity is shaped to act as a reflector or to receive a replaceable reflector for a lamp; and a plurality of lamp passages, wherein each lamp passage extends into the monolithic member from one of the plurality of reflector cavities.
Abstract:
Methods and apparatus for controlling a flow of process material to a deposition chamber. In embodiments, the apparatus includes a deposition chamber in fluid communication with one or more sublimators through one or more delivery lines, wherein the one or more sublimators each include an ampoule in fluid communication with the one or more delivery lines through an opening, and at least a first heat source and a second heat source, wherein the first heat source is a radiant heat source adjacent the ampoule and the second heat source is adjacent the opening, wherein the one or more delivery lines include one or more conduits between the deposition chamber and the one or more sublimators, and wherein the one or more conduits include one or more valves to open or close the one or more conduits, wherein the one or more valves in an open position prevents the flow of process material into the deposition chamber, and wherein the one or more valves in a closed position directs the flow of process material into the deposition chamber.
Abstract:
An apparatus for processing a semiconductor substrate is described. The apparatus is a process chamber having an optically transparent upper dome and lower dome. Vacuum is maintained in the process chamber during processing. The upper dome is thermally controlled by flowing a thermal control fluid along the upper dome outside the processing region. Thermal lamps are positioned proximate the lower dome, and thermal sensors are disposed among the lamps. The lamps are powered in zones, and a controller adjusts power to the lamp zones based on data received from the thermal sensors. A reflective liner may provide for improved temperature measurement and heating of a substrate.
Abstract:
In some embodiments, a gas distribution apparatus includes a first plate having a plurality of ports disposed through the first plate; a second plate disposed above and coupled to the first plate; a third plate disposed above and coupled to the second plate; a first plenum disposed between the first plate and the second plate and fluidly coupled to a first set of the plurality of ports, wherein the first plenum comprises a gas supply coupled to the first plenum to provide a process gas to an area proximate a substrate via a first set of the plurality of ports; a second plenum disposed between second plate and the third plate and fluidly coupled to the second set of ports, wherein the second plenum comprises a vacuum applied to the second plenum to remove reaction byproducts from the area proximate the substrate via a second set of the plurality ports.
Abstract:
Embodiments of the present invention provide apparatus and methods for performing rapid thermal processing. One embodiment of the present invention provides an apparatus for processing a substrate. The apparatus includes a heating source disposed outside a chamber body and configured to provide thermal energy towards a processing volume. The substrate support defines a substrate supporting plane, and the substrate support is configured to support the substrate in the substrate supporting plane. The heating source includes a frame member having an inner wall surrounding an area large enough to encompass a surface area of the substrate, and a plurality of diode laser tiles mounted on the inner wall of the frame member. Each of the plurality of diode laser tiles is directed towards a corresponding area in the processing volume.
Abstract:
Methods and apparatus for controlling a flow of process material to a deposition chamber. In embodiments, the apparatus includes a deposition chamber in fluid communication with one or more sublimators through one or more delivery lines, wherein the one or more sublimators each include an ampoule in fluid communication with the one or more delivery lines through an opening, and at least a first heat source and a second heat source, wherein the first heat source is a radiant heat source adjacent the ampoule and a second heat source is adjacent the opening, wherein the one or more delivery lines include one or more conduits between the deposition chamber and the one or more sublimators, and wherein the one or more conduits include one or more valves to open or close the one or more conduits, wherein the one or more valves in an open position prevents the flow of process material into the deposition chamber, and wherein the one or more valves in a closed position directs the flow of process material into the deposition chamber.