Abstract:
Embodiments of process chambers having flow path defining components that may provide more uniform gas flow are provided herein. In some embodiments, a process chamber lid to provide more uniform gas flow may include a dome; an outwardly extending flange disposed about a peripheral edge of the dome; and an upwardly sloped portion coupling the peripheral edge of the dome to the outwardly extending flange, wherein a portion of the outwardly extending flange and a portion of the upwardly sloped portion form a flow path with an interior surface of a process chamber when the process chamber lid is disposed atop the process chamber to provide a flow of gas towards an interior of the process chamber, wherein an angle between the upwardly sloped portion and a bottom surface of the outwardly extending flange is less than 90 degrees.
Abstract:
Apparatus for processing a substrate in a process chamber are provided here. In some embodiments, a gas injector for use in a process chamber includes a first set of outlet ports that provide an angled injection of a first process gas at an angle to a planar surface, and a second set of outlet ports proximate the first set of outlet ports that provide a pressurized laminar flow of a second process gas substantially along the planar surface, the planar surface extending normal to the second set of outlet ports.
Abstract:
Methods and apparatus for thermal management of a precursor for use in substrate processing are provided herein. In some embodiments, an apparatus for thermal management of a precursor for use in substrate processing may include a body having an opening sized to receive a storage container having a liquid or solid precursor disposed therein, the body fabricated from thermally conductive material; one or more thermoelectric devices coupled to the body proximate the opening; a heat sink coupled to the one or more thermoelectric devices; and a fan disposed proximate to a back side of the heat sink to provide a flow of air to the heat sink.
Abstract:
Methods and apparatus are provided for reducing the thermal signal noise in process chambers using a non-contact temperature sensing device to measure the temperature of a component in the process chamber. In some embodiments, a susceptor for supporting a substrate in a process chamber includes a first surface comprising a substrate support surface; and a second surface opposite the first surface, wherein a portion of the second surface comprises a feature to absorb incident radiant energy.
Abstract:
Embodiments of the invention generally relate to susceptor support shafts and process chambers containing the same. A susceptor support shaft supports a susceptor thereon, which in turn, supports a substrate during processing. The susceptor support shaft reduces variations in temperature measurement of the susceptor and/or substrate by providing a consistent path for a pyrometer focal beam directed towards the susceptor and/or substrate, even when the susceptor support shaft is rotated. The susceptor support shafts also have a relatively low thermal mass which increases the ramp up and ramp down rates of a process chamber.
Abstract:
Apparatus for processing a substrate in a process chamber are provided here. In some embodiments, a gas injector for use in a process chamber includes a first set of outlet ports that provide an angled injection of a first process gas at an angle to a planar surface, and a second set of outlet ports proximate the first set of outlet ports that provide a pressurized laminar flow of a second process gas substantially along the planar surface, the planar surface extending normal to the second set of outlet ports.
Abstract:
In some embodiments, a gas distribution apparatus includes a first plate having a plurality of ports disposed through the first plate; a second plate disposed above and coupled to the first plate; a third plate disposed above and coupled to the second plate; a first plenum disposed between the first plate and the second plate and fluidly coupled to a first set of the plurality of ports, wherein the first plenum comprises a gas supply coupled to the first plenum to provide a process gas to an area proximate a substrate via a first set of the plurality of ports; a second plenum disposed between second plate and the third plate and fluidly coupled to the second set of ports, wherein the second plenum comprises a vacuum applied to the second plenum to remove reaction byproducts from the area proximate the substrate via a second set of the plurality ports.
Abstract:
Substrate processing apparatus and gas distribution apparatus are provided herein. In some embodiments, a gas distribution apparatus includes a first quartz layer having a plurality of openings disposed through the first quartz layer; a second quartz layer coupled to the first quartz layer; a first plenum fluidly coupled to a first set of the plurality of openings and disposed between the first quartz layer and the second quartz layer; a second plenum fluidly coupled to a second set of the plurality of openings and disposed between the first quartz layer and the second quartz layer; and one or more outlets disposed on a side of the gas distribution apparatus opposite the plurality of openings disposed through the first quartz layer to provide a gas to the side of the gas distribution apparatus opposite the first quartz layer.