Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Embodiments of the disclosure provide a plasma source assembly and process chamber design that can be used for any number of substrate processing techniques. The plasma source may include a plurality of discrete electrodes that are integrated with a reference electrode and a gas feed structure to generate a uniform, stable and repeatable plasma during processing. The plurality of discrete electrodes include an array of electrodes that can be biased separately, in groups or all in unison, relative to a reference electrode. The plurality of discrete electrodes may include a plurality of conductive rods that are positioned to generate a plasma within a processing region of a process chamber. The plurality of discrete electrodes is provided RF power from standing or traveling waves imposed on a power distribution element to which the electrodes are connected.
Abstract:
The present disclosure generally comprises a heated showerhead assembly that may be used to supply processing gases into a processing chamber. The processing chamber may be an etching chamber. When processing gas is evacuated from the processing chamber, the uniform processing of the substrate may be difficult. As the processing gas is pulled away from the substrate and towards the vacuum pump, the plasma, in the case of etching, may not be uniform across the substrate. Uneven plasma may lead to uneven etching. To prevent uneven etching, the showerhead assembly may be separated into two zones each having independently controllable gas introduction and temperature control. The first zone corresponds to the perimeter of the substrate while the second zone corresponds to the center of the substrate. By independently controlling the temperature and the gas flow through the showerhead zones, etching uniformity of the substrate may be increased.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.
Abstract:
The invention discloses a plasma processing apparatus comprising a chamber lid, a chamber body and a support assembly. The chamber body, defining a processing volume for containing a plasma, for supporting the chamber lid. The chamber body is comprised of a chamber sidewall, a bottom wall and a liner assembly. The chamber sidewall and the bottom wall define a processing volume for containing a plasma. The liner assembly, disposed inside the processing volume, comprises of three or more slots formed thereon for providing an axial symmetric RF current path. The support assembly supports a substrate for processing within the chamber body. With the liner assembly with several symmetric slots, the present invention can prevent electromagnetic fields thereof from being azimuthal asymmetry.
Abstract:
Embodiments of the disclosure provide a plasma source assembly and process chamber design that can be used for any number of substrate processing techniques. The plasma source may include a plurality of discrete electrodes that are integrated with a reference electrode and a gas feed structure to generate a uniform, stable and repeatable plasma during processing. The plurality of discrete electrodes include an array of electrodes that can be biased separately, in groups or all in unison, relative to a reference electrode. The plurality of discrete electrodes may include a plurality of conductive rods that are positioned to generate a plasma within a processing region of a process chamber. The plurality of discrete electrodes is provided RF power from standing or traveling waves imposed on a power distribution element to which the electrodes are connected.
Abstract:
Embodiments of the disclosure provide a plasma source assembly and process chamber design that can be used for any number of substrate processing techniques. The plasma source may include a plurality of discrete electrodes that are integrated with a reference electrode and a gas feed structure to generate a uniform, stable and repeatable plasma during processing. The plurality of discrete electrodes include an array of electrodes that can be biased separately, in groups or all in unison, relative to a reference electrode. The plurality of discrete electrodes may include a plurality of conductive rods that are positioned to generate a plasma within a processing region of a process chamber. The plurality of discrete electrodes is provided RF power from standing or traveling waves imposed on a power distribution element to which the electrodes are connected.
Abstract:
Embodiments of the present invention provide a plasma chamber design that allows extremely symmetrical electrical, thermal, and gas flow conductance through the chamber. By providing such symmetry, plasma formed within the chamber naturally has improved uniformity across the surface of a substrate disposed in a processing region of the chamber. Further, other chamber additions, such as providing the ability to manipulate the gap between upper and lower electrodes as well as between a gas inlet and a substrate being processed, allows better control of plasma processing and uniformity as compared to conventional systems.