Abstract:
Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
Abstract:
A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward wafer. The auxiliary magnets may be either permanent magnets or electromagnets.
Abstract:
Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
Abstract:
An electrostatic chuck includes a puck having a support surface to support a substrate when disposed thereon and an opposing second surface, wherein one or more chucking electrodes are embedded in the puck, a body having a support surface coupled to the second surface of the puck to support the puck, a DC voltage sensing circuit disposed on support surface of the puck, and an inductor disposed in the body and proximate the support surface of the body, wherein the inductor is electrically coupled to DC voltage sensing circuit, and wherein the inductor is configured to filter high frequency current flow in order to accurately measure DC potential on the substrate.
Abstract:
Embodiments of substrate supports for use in substrate processing chambers are provided herein. In some embodiments, a substrate support includes: an upper assembly having a base plate assembly coupled to a lower surface of a cooling plate, wherein the base plate assembly includes a plurality of electrical feedthroughs, and wherein the cooling plate includes a plurality of openings aligned with the plurality of electrical feedthroughs; an electrostatic chuck disposed on the upper assembly and removably coupled to the cooling plate, wherein the electrostatic chuck has a chucking electrode disposed therein that is electrically coupled to a first pair of electrical feedthroughs of the plurality of electrical feedthroughs; and an inner tube coupled to the cooling plate and configured to provide an RF delivery path to the electrostatic chuck.
Abstract:
Methods and apparatus for processing a substrate are provided herein. For example, a processing chamber for processing a substrate comprises a sputtering target, a chamber wall at least partially defining an inner volume within the processing chamber and connected to ground, a power source comprising an RF power source, a process kit surrounding the sputtering target and a substrate support, an auto capacitor tuner (ACT) connected to ground and the sputtering target, and a controller configured to energize the cleaning gas disposed in the inner volume of the processing chamber to create the plasma and tune the sputtering target using the ACT to maintain a predetermined potential difference between the plasma in the inner volume and the process kit during the etch process to remove sputtering material from the process kit, wherein the predetermined potential difference is based on a resonant point of the ACT.
Abstract:
Embodiments of process kits for use in a process chamber are provided herein. In some embodiments, a process kit for use in a process chamber includes: a chamber liner having a tubular body with an upper portion and a lower portion; a confinement plate coupled to the lower portion of the chamber liner and extending radially inward from the chamber liner, wherein the confinement plate includes a plurality of slots; a shield ring disposed within the chamber liner and movable between the upper portion of the chamber liner and the lower portion of the chamber liner; and a plurality of ground straps coupled to the shield ring at a first end of each ground strap of the plurality of ground straps and to the confinement plate at a second end of each ground strap to maintain electrical connection between the shield ring and the chamber liner when the shield ring moves.
Abstract:
A method and apparatus are described for reducing particle contamination in a plasma processing chamber. In one embodiment, a pasting disk is provided which includes a disk-shaped base of high-resistivity material that has an electrically conductive pasting material layer applied to a top surface of the base so that the pasting material layer partially covers the top surface of the base. The pasting disk is sputter etched to deposit conductive pasting material over a wide area on the interior surfaces of a plasma processing chamber while minimizing deposition on dielectric components that are used to optimize the sputter etch process during substrate processing.
Abstract:
A magnetron sputter reactor for sputtering deposition materials such as tantalum, tantalum nitride and copper, for example, and its method of use, in which self-ionized plasma (SIP) sputtering and inductively coupled plasma (ICP) sputtering are promoted, either together or alternately, in the same or different chambers. Also, bottom coverage may be thinned or eliminated by ICP resputtering in one chamber and SIP in another. SIP is promoted by a small magnetron having poles of unequal magnetic strength and a high power applied to the target during sputtering. ICP is provided by one or more RF coils which inductively couple RF energy into a plasma. The combined SIP-ICP layers can act as a liner or barrier or seed or nucleation layer for hole. In addition, an RF coil may be sputtered to provide protective material during ICP resputtering. In another chamber an array of auxiliary magnets positioned along sidewalls of a magnetron sputter reactor on a side towards the wafer from the target. The magnetron preferably is a small, strong one having a stronger outer pole of a first magnetic polarity surrounding a weaker outer pole of a second magnetic polarity and rotates about the central axis of the chamber. The auxiliary magnets preferably have the first magnetic polarity to draw the unbalanced magnetic field component toward the wafer. The auxiliary magnets may be either permanent magnets or electromagnets.