Abstract:
Methods and apparatus for passivating a target are provided herein. For example, a method includes a) supplying an oxidizing gas into an inner volume of the process chamber; b) igniting the oxidizing gas to form a plasma and oxidize at least one of a target or target material deposited on a process kit disposed in the inner volume of the process chamber; and c) performing a cycle purge comprising: c1) providing air into the process chamber to react with the at least one of the target or target material deposited on the process kit; c2) maintaining a predetermined pressure for a predetermined time within the process chamber to generate a toxic by-product caused by the air reacting with the at least one of the target or target material deposited on the process kit; and c3) exhausting the process chamber to remove the toxic by-product.
Abstract:
A moveable substrate support for use in a processing chamber is provided. The moveable substrate support includes a substrate support surface and a robot, wherein the robot is configured to move the substrate support surface along a movement path. The substrate support includes a halo, and the halo protects the underlying components of the processing chamber from unwanted deposition, while the substrate support surface is moving along the movement path. The substrate support protects processing chamber components from deposition, reducing cleaning time and reducing the need for repairs of the components of the processing chamber.
Abstract:
Methods, apparatuses and systems for detecting and managing arc events during a plasma chamber process include receiving impedance data measured during a plasma chamber process, analyzing the impedance data to determine if an arc event is occurring during the plasma chamber process, and if it is determined that an arc event is occurring, an action is taken to suppress an arc of the arc event. In some instances, a machine learning model that has been trained to recognize when an arc event is occurring from received measurement data is used to determine if an arc event is occurring.
Abstract:
Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
Abstract:
A gas flow system is provided, including a gas flow source, one or more gas inlets, one or more gas outlets, a gas flow region, a low pressure region, wherein the low pressure region is fluidly coupled to the one or more gas outlets, a high pressure region, and a gap. The one or more gas inlets are fluidly coupleable to the gas flow source. The gas flow region is fluidly coupled to the one or more gas inlets and the one or more gas outlets. The gap fluidly couples the gas flow region to the high pressure region. The high pressure region near the targets allows for process gas interactions with the target to sputter onto the substrate below. The low pressure region near the substrate prevents unwanted chemical interactions between the process gas and the substrate.
Abstract:
Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a deposition ring and a pedestal assembly. The components of the process kit work alone, and in combination, to significantly reduce their effects on the electric fields around a substrate during processing.
Abstract:
Methods and apparatus for controlling processing of a substrate within a process chamber, comprising: performing statistical analysis on measurements of deposition profile of at least one previously processed substrate processed in the process chamber, wherein the deposition profile is based at least on modulating a power parameter of at least one power supply affecting a magnetron in the process chamber; determining, based on the statistical analysis, a model of the deposition profile as a function of at least the power parameter; fitting the measurements of deposition profile to the model; determining a power parameter setpoint for the at least one power supply using the fitted model based on a desired deposition profile of an unprocessed substrate; and setting the power parameter setpoint for processing the unprocessed substrate.
Abstract:
Embodiments provided herein generally include apparatus, plasma processing systems and methods for dynamic impedance matching across multiple frequency bands of a power source. An example method includes amplifying a broadband signal, splitting the amplified broadband signal across a plurality of channel paths coupled to an impedance matching network, and adjusting at least one first impedance associated with the impedance matching network to achieve a second impedance within a threshold value based at least in part on feedback associated with the broadband signal. The impedance matching network includes a plurality of impedance matching circuits coupled to plasma excitation circuitry, and each of the impedance matching circuits is coupled to a different path of the plurality of channel paths and an output node.
Abstract:
Embodiments of the invention generally relate to a process kit for a semiconductor processing chamber, and a semiconductor processing chamber having a kit. More specifically, embodiments described herein relate to a process kit including a deposition ring and a pedestal assembly. The components of the process kit work alone, and in combination, to significantly reduce their effects on the electric fields around a substrate during processing.
Abstract:
An electrostatic chuck includes a puck having a support surface to support a substrate when disposed thereon and an opposing second surface, wherein one or more chucking electrodes are embedded in the puck, a body having a support surface coupled to the second surface of the puck to support the puck, a DC voltage sensing circuit disposed on support surface of the puck, and an inductor disposed in the body and proximate the support surface of the body, wherein the inductor is electrically coupled to DC voltage sensing circuit, and wherein the inductor is configured to filter high frequency current flow in order to accurately measure DC potential on the substrate.