Abstract:
Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
Abstract:
A film deposition apparatus reduces hillock formation while yielding uniform film thickness distribution. A film deposition apparatus of a present embodiment includes: a chamber; a rotary table that circulates and carries a workpiece W along a circumferential transfer path L; multiple targets that contain a film deposition material, and that are provided in positions at different radial distances from a center of rotation of the rotary table; a shield member that forms a film deposition chamber surrounding a region where the film deposition material scatters, and that has an opening on the side facing the circulated and carried workpiece; and a plasma generator that includes a sputter gas introduction unit for introducing a sputter gas into the film deposition chamber, and a power supply unit for applying power to the target, and that generates plasma in the sputter gas G1 in the film deposition chamber.
Abstract:
Methods and apparatus for physical vapor deposition are provided herein. In some embodiments, a process kit shield for use in a physical vapor deposition chamber may include an electrically conductive body having one or more sidewalls defining a central opening, wherein the body has a ratio of a surface area of inner facing surfaces of the one or more sidewalls to a height of the one or more sidewalls of about 2 to about 3.
Abstract:
A method of providing a texture to a surface of a component for use in a semiconductor processing chamber is provided. The method includes directing a beam of photons at the surface of the component and scanning the beam of photons across a first region of the surface of the component to form a plurality of features on the surface within the first region. The features that are formed are depressions, protuberances, or combinations thereof.
Abstract:
It is an object of this invention to prevent a deposited film from adhering to an exhaust chamber so as to suppress the generation of particles. A sputtering apparatus (1) includes a shutter accommodation unit (23) which is detachably placed in an exhaust chamber (8) and accommodates a shutter (19) in a retracted state, and shield members (40a, 40b) which at least partially cover the exhaust port of the exhaust chamber (8), and are at least partially formed around an opening portion of the shutter accommodation unit (23).
Abstract:
A plasma processing apparatus includes a stage in a processing chamber where plasma is formed, a wafer to be processed, and an electrode arranged at an upper part of the stage and supplied with power to electrostatically attract and hold the wafer on the stage, and consecutively processing a plurality of wafers one by one. There are plural processing steps of conducting processing using the plasma under different conditions and there are plural periods when formation of plasma is stopped between the processing steps. An inner wall of the processing chamber is coated before starting the processing of any wafer, and voltage supplied to the electrode is changed according to a balance of respective polarities of particles floating and charged in the processing chamber in each period when formation of plasma is stopped.
Abstract:
An inductively coupled plasma source for a focused charged particle beam system includes a conductive shield within the plasma chamber in order to reduce capacitative coupling to the plasma. The internal conductive shield is maintained at substantially the same potential as the plasma source by a biasing electrode or by the plasma. The internal shield allows for a wider variety of cooling methods on the exterior of the plasma chamber.
Abstract:
Provided are a plasma processing apparatus and a plasma processing method wherein particles generated due to the inner potential of an inner cylinder disposed inside of a vacuum container are reduced. The plasma processing apparatus has, inside of a metal vacuum chamber (11), the inner cylinder (15) composed of a surface-alumited aluminum, disposes a substrate in a plasma diffusion region, and performs plasma processing. A plurality of protruding portions (15a) in point-contact with the vacuum chamber (11) are provided on the lower end portion of the inner cylinder (15), the alumite film (16) on the leading end portion (15b) of each of the protruding portion (15a) is removed, and the inner cylinder and the vacuum chamber (11) are electrically connected to each other.
Abstract:
Non-oxidizing plasma treatment devices for treating a semiconductor workpiece generally include a substantially non-oxidizing gas source; a plasma generating component in fluid communication with the non-oxidizing gas source; a process chamber in fluid communication with the plasma generating component, and an exhaust conduit centrally located in a bottom wall of the process chamber. In one embodiment, the process chamber is formed of an aluminum alloy containing less than 0.15% copper by weight; In other embodiments, the process chamber includes a coating of a non-copper containing material to prevent formation of copper hydride during processing with substantially non-oxidizing plasma. In still other embodiments, the process chamber walls are configured to be heated during plasma processing. Also disclosed are non-oxidizing plasma processes.
Abstract:
A plasma processing apparatus includes a vacuum processing chamber, a plasma generating unit having a first power source, a gas supply unit, a lower electrode having a sample table surface for holding a sample in the vacuum processing chamber, and a vacuum pumping unit. The apparatus further includes a plate disposed at a position opposed to the sample table surface, a disc electricity conductor disposed in contact with the plate, a second power source for applying an RF frequency bias power to the disc electricity conductor, and a unit for controlling a temperature of the plate to a predetermined value. The plate is made of silicon or carbon at high purity, and the disc electricity conductor and the plate have a plurality of holes for introducing processing gas from the gas supply unit into the vacuum processing chamber.