Abstract:
Embodiments disclosed herein generally relate to the processing of substrates, and more particularly, relate to methods for forming a dielectric film. In one embodiment, the method includes placing a plurality of substrates inside a processing chamber and performing a sequence of exposing the substrates to a first reactive gas comprising silicon, and then exposing the substrates to a plasma of a second reactive gas comprising nitrogen and at least one of oxygen or carbon, and repeating the sequence to form the dielectric film comprising silicon carbon nitride or silicon carbon oxynitride on each of the substrates.
Abstract:
Methods and apparatus for depositing a coating on a semiconductor manufacturing apparatus component are provided herein. In some embodiments, a method of depositing a coating on a semiconductor manufacturing apparatus component includes: sequentially exposing a semiconductor manufacturing apparatus component including nickel or nickel alloy to an aluminum precursor and a reactant to form an aluminum containing layer on a surface of the semiconductor manufacturing apparatus component by a deposition process.
Abstract:
Embodiments disclosed herein generally relate to forming dielectric materials in high aspect ratio features. In one embodiment, a method for filling high aspect ratio trenches in one processing chamber is disclosed. The method includes placing a substrate inside a processing chamber, where the substrate has a surface having a plurality of high aspect ratio trenches and the surface is facing a gas/plasma distribution assembly. The method further includes performing a sequence of depositing a layer of dielectric material on the surface of the substrate and inside each of the plurality of trenches, where the layer of dielectric material is on a bottom and side walls of each trench, and removing a portion of the layer of dielectric material disposed on the surface of the substrate, where an opening of each trench is widened. The sequence repeats until the trenches are filled seamlessly with the dielectric material.
Abstract:
Methods and apparatus for coating processing reactor component parts are provided herein. In some embodiments, a method for coating a part via atomic layer deposition includes: fastening a workpiece to be coated to an interior volume facing portion of a part coating reactor; and performing an ALD process on the fastened workpiece within the part coating reactor.
Abstract:
Embodiments of an apparatus for coating a plurality of gas lines are provided herein. In some embodiments, an apparatus for coating a plurality of gas lines via an ALD process includes: an oven having an enclosure that defines an interior volume configured to house the plurality of gas lines, the enclosure having a door configured for transferring the plurality of gas lines into and out of the interior volume; a plurality of inlet ports disposed through a first wall of the enclosure; a plurality of exhaust ports disposed through a second wall of the enclosure; a fluid panel disposed outside of the oven and coupled to the plurality of inlet ports via corresponding ones of a plurality of fluid distribution assemblies; and a foreline disposed outside of the oven and coupled to the plurality of exhaust ports.
Abstract:
Methods and apparatus for coating processing reactor component parts are provided herein. In some embodiments, a part coating reactor includes: a lower body and a lid assembly that together define and enclose an interior volume; one or more heaters disposed in the lid assembly; one or more coolant channels disposed in the lid assembly to flow a heat transfer medium therethrough; a plurality of gas passages disposed through the lid assembly to facilitate providing one or more gases to the interior volume, wherein the plurality of gas passages include a plurality of fluidly independent plenums disposed in the lid assembly; and one or more mounting brackets to facilitate coupling a workpiece to the lid assembly.