摘要:
An apparatus includes a power input, a power output, and a plurality of independent powering units each comprising at least one charge store. Each of the plurality of powering units is capable of receiving power from the power input while isolating the power output, and each of the plurality of powering units is capable of outputting power to the power output while isolating the power input.
摘要:
The present invention provides a receiver circuit and method for receiving an input signal from a source voltage domain and converting the input signal into an output signal for a destination voltage domain. The source voltage domain operates from a supply voltage that exceeds a stressing threshold of components within the receiver circuitry, and the receiver circuitry is configured to operate from the supply voltage of the source voltage domain. The receiver circuitry comprises first internal signal generation circuitry configured to convert the input signal into a first internal signal in a first voltage range, and second internal signal generation circuitry configured to convert the input signal into a second internal signal in a second voltage range. Signal evaluation circuitry establishes a logic high voltage threshold and a logic low voltage threshold dependent on the supply voltage, and employs the first and second internal signals in order to detect based on the logic high voltage threshold and logic low voltage threshold when the input signal transitions between a logic low level and a logic high level (in either direction). Output generation circuitry then generates the output signal in dependence on the detection performed by the signal evaluation circuitry. The first voltage range and the second voltage range are such that the first internal signal and second internal signal will not exceed the stressing threshold of components in the signal evaluation circuitry. The receiver circuitry is able to reliably detect transitions in the input signal in situations where the supply voltage of the source voltage domain exceeds the stressing threshold of the receiver's components, but without overstress of the receiver's components.
摘要:
An integrated circuit is provided with interface circuitry used to provide an interface between functional circuitry of the integrated circuit and components external to the integrated circuit. The interface circuitry includes a plurality of interface cells having interface components configured to operate from a first power supply. Each interface cell incorporates a power supply line section extending across its width and configured to cooperate with power supply line sections of other interface cells to provide a power supply line structure shared by the plurality of interface cells, for provision of the first power supply to the interface components. Each power supply line section includes a first supply line portion and a second supply line portion, the first supply line portion being sized to support a current carrying constraint of the interface circuitry, whilst the second supply line portion is sized insufficiently to support that current carrying constraint. Instead, each interface cell is arranged within the interface circuitry such that the second supply line portion is connected to a current carrying structure external to that interface cell, such that the second supply line portion in combination with the connected current carrying structure is sized sufficiently to support the current carrying constraint. Such an approach enables a reduction in the area required for the power supply line structure, hence enabling a reduction in the size of the interface circuitry, and accordingly a corresponding reduction in the required size of the integrated circuit.
摘要:
The present invention provides a receiver circuit and method for receiving an input signal from a source voltage domain and converting the input signal into an output signal for a destination voltage domain. The source voltage domain operates from a supply voltage that exceeds a stressing threshold of components within the receiver circuitry, and the receiver circuitry is configured to operate from the supply voltage of the source voltage domain. The receiver circuitry comprises first internal signal generation circuitry configured to convert the input signal into a first internal signal in a first voltage range, and second internal signal generation circuitry configured to convert the input signal into a second internal signal in a second voltage range. Signal evaluation circuitry establishes a logic high voltage threshold and a logic low voltage threshold dependent on the supply voltage, and employs the first and second internal signals in order to detect based on the logic high voltage threshold and logic low voltage threshold when the input signal transitions between a logic low level and a logic high level (in either direction). Output generation circuitry then generates the output signal in dependence on the detection performed by the signal evaluation circuitry. The first voltage range and the second voltage range are such that the first internal signal and second internal signal will not exceed the stressing threshold of components in the signal evaluation circuitry. The receiver circuitry is able to reliably detect transitions in the input signal in situations where the supply voltage of the source voltage domain exceeds the stressing threshold of the receiver's components, but without overstress of the receiver's components.
摘要:
Various implementations described herein are directed to circuit. The circuit may include a first input stage having first devices and a first path for slow slew input detection. The circuit may include a second input stage having second devices and a second path for fast slew input detection. The circuit may include a separation stage that couples the second input stage to the first input stage during a first mode of operation so as to reduce power consumption of the circuit during slow slew input detection.
摘要:
Various implementations described herein are directed to circuit. The circuit may include a first input stage having first devices and a first path for slow slew input detection. The circuit may include a second input stage having second devices and a second path for fast slew input detection. The circuit may include a separation stage that couples the second input stage to the first input stage during a first mode of operation so as to reduce power consumption of the circuit during slow slew input detection.
摘要:
Various implementations described herein are directed to an integrated circuit. The integrated circuit may include signal generation circuitry that receives an input signal from a first voltage domain and generates multiple internal signals based on the input signal. The integrated circuit may include signal evaluation circuitry that receives the multiple internal signals from the signal generation circuitry and provides an intermediate signal based on the multiple internal signals. The integrated circuit may include signal conversion circuitry that receives the intermediate signal and provides an output signal for a second voltage domain based on the intermediate signal. The integrated circuit may include signal protection circuitry that receives the input signal from the first voltage domain, receives the intermediate signal from the signal evaluation circuitry, and allows the input signal until the intermediate signal transitions between a first state and a second state that is different than the first state.
摘要:
The present invention provides a receiver circuit and method for receiving an input signal from a source voltage domain and converting the input signal into an output signal for a destination voltage domain. The source voltage domain operates from a supply voltage that exceeds a stressing threshold of components within the receiver circuitry, and the receiver circuitry is configured to operate from the supply voltage of the source voltage domain. The receiver circuitry comprises first internal signal generation circuitry configured to convert the input signal into a first internal signal in a first voltage range, and second internal signal generation circuitry configured to convert the input signal into a second internal signal in a second voltage range. Signal evaluation circuitry establishes a logic high voltage threshold and a logic low voltage threshold dependent on the supply voltage, and employs the first and second internal signals in order to detect based on the logic high voltage threshold and logic low voltage threshold when the input signal transitions between a logic low level and a logic high level (in either direction). Output generation circuitry then generates the output signal in dependence on the detection performed by the signal evaluation circuitry. The first voltage range and the second voltage range are such that the first internal signal and second internal signal will not exceed the stressing threshold of components in the signal evaluation circuitry. The receiver circuitry is able to reliably detect transitions in the input signal in situations where the supply voltage of the source voltage domain exceeds the stressing threshold of the receiver's components, but without overstress of the receiver's components.
摘要:
An integrated circuit is provided with interface circuitry used to provide an interface between functional circuitry of the integrated circuit and components external to the integrated circuit. The interface circuitry includes a plurality of interface cells having interface components configured to operate from a first power supply. Each interface cell incorporates a power supply line section extending across its width and configured to cooperate with power supply line sections of other interface cells to provide a power supply line structure shared by the plurality of interface cells, for provision of the first power supply to the interface components. Each power supply line section includes a first supply line portion and a second supply line portion, the first supply line portion being sized to support a current carrying constraint of the interface circuitry, while the second supply line portion is sized insufficiently to support that current carrying constraint. Instead, each interface cell is arranged within the interface circuitry such that the second supply line portion is connected to a current carrying structure external to that interface cell, such that the second supply line portion in combination with the connected current carrying structure is sized sufficiently to support the current carrying constraint. Such an approach enables a reduction in the area required for the power supply line structure, hence enabling a reduction in the size of the interface circuitry, and accordingly a corresponding reduction in the required size of the integrated circuit.
摘要:
Output signal generation circuitry 100 may be used for converting an input signal 110 from a source voltage domain to an output signal for a destination voltage domain, the destination voltage domain operating from a supply voltage that exceeds a stressing threshold of components within the output signal generation circuitry. The output signal generation circuitry may comprise level shifting circuitry 160 operating from the supply voltage, which is configured to generate at an output node 130 the output signal for the destination voltage domain in dependence on the input signal. The output signal generation circuitry may also comprise tracking circuitry 280A, 280B, 280C, 280D associated with at least one component of the level shifting circuitry to ensure that a voltage drop across the at least one component does not exceed the stressing threshold, wherein the tracking circuitry additionally introduces a delay in a change in the output signal in response to a change in the input signal. Timing compensation circuitry 180A, 180B may also be provided, to control the voltage on the output node in a manner to compensate for the delay introduced by the tracking circuitry.