Abstract:
A method of manufacturing a glass component includes preparing a glass substrate having a thickness greater than or equal to 300 μm, forming first electric wires on a first surface of the glass substrate, forming a structure by joining the glass substrate via a resin layer to a support substrate such that the first surface of the glass substrate faces the resin layer, thinning the glass substrate from a second surface of the glass substrate to a thickness between 10 μm and 80 μm, forming through holes in the glass substrate by irradiating the glass substrate from the second surface with a laser beam, forming second electric wires on the second surface of the glass substrate such that the second electric wires are electrically connected to the corresponding first electric wires via conductors filling the through holes, and separating the glass substrate from the support substrate.
Abstract:
To provide a low-cost wave plate that does not cause any diffracted light and wavefront aberrations. The challenge is met by providing a wave plate characterized by including a first region, a second region, and a third region which are placed on a glass substrate. The first region and the second region exhibit each uniaxial birefringence at least in their portions. The third region exhibits uniaxial birefringence and is interposed between the first region and the second region. Phase advance axes of birefringence of the first region and the second region are substantially parallel to each other. A phase advance axis of birefringence of the third region is substantially orthogonal to the phase advance axes of birefringence of the first and second regions.
Abstract:
A manufacturing method of a glass substrate having through holes includes (i) irradiating at a through hole forming target position on a first surface of the glass substrate with a laser light; and (ii) performing a wet etching treatment on the glass substrate. During the wet etching treatment being performed on the glass substrate, an ultrasonic vibration with a frequency of less than 40 kHz is applied to an etchant over at least a part of the wet etching period, referred to as an ultrasonic vibration application period.
Abstract:
There is provided a glass substrate manufacturing method for manufacturing a glass substrate with a plurality of through-holes. The method includes a laser processing of forming the plurality of through-holes in the glass substrate, the glass substrate having a first main surface and a second main surface facing the first main surface, by irradiating a laser beam toward the first main surface; and an etching process of injecting an etchant only from a position facing the second main surface of the glass substrate toward the plurality of through-holes formed in the glass substrate.
Abstract:
An apparatus for forming holes in a glass substrate, includes a laser source that irradiates a laser beam on a first surface of the glass substrate, and a base plate on which a second surface of the glass substrate, opposite to the first surface, is placed. The base plate includes a recessed area in a central part thereof, and supports arranged within the recessed area to support the glass substrate. At least a part of the supports is arranged in a lattice shape within a plane approximately perpendicular to a direction in which the supports extend. One support and another adjacent support closest to the one support, amongst the supports arranged in the lattice shape, are arranged at an interval that is shorter than 30 mm, and the supports have a height that is higher than 70 μm.
Abstract:
A glass substrate for forming a through-substrate via of a semiconductor device includes a plurality of penetration holes. In the glass substrate, an α-count is 0.05 c/cm2·h or less, a SiO2 content is 40 wt % or higher, a sum total content of Li2O (wt %)+Na2O (wt %)+K2O (Wt%) is 6.0 wt % or lower, and an average coefficient of thermal expansion at 50° C. to 350° C. is in a range of 20×10−7/K to 40×10−7/K.
Abstract translation:用于形成半导体器件的贯通基板通孔的玻璃基板包括多个贯通孔。 在玻璃基板中,α计数为0.05c / cm 2·h以下,SiO 2含量为40重量%以上,Li 2 O(wt%)+ Na 2 O(wt%)+ K 2 O(Wt% )为6.0重量%以下,在50℃〜350℃的平均热膨胀系数在20×10-7 / K〜40×10-7 / K的范围内。
Abstract:
An organic EL element includes a transparent substrate; a first electrode; an organic light emitting layer formed on the first electrode; and a second electrode formed on the organic light emitting layer, wherein a scattering layer including a base material made of glass and scattering substances dispersed in the base material is provided on the transparent substrate, and a light extraction assistance layer is provided between the scattering layer and the first electrode, the light extraction assistance layer being made of an inorganic material other than glass.
Abstract:
Provided is an electronic device wherein at a time of laser-sealing a space between two glass substrates, it is possible to suppress generation of a crack or a breakage etc. in the glass substrates or a sealing layer. When a cross-section of the sealing layer 6 of the electronic device is observed, the sum total of perimeter lengths of the low expansion filler and the laser absorbent present in a unit area (fluidity inhibition value) is from 0.7 to 1.3 μm−1, and the sum total (thermal expansion value) of a value obtained by multiplying the area ratio of the sealing glass by the thermal expansion coefficient, and a value obtained by multiplying the sum total of the area ratios of the low expansion filler and the laser absorbent by the thermal expansion coefficient of the low expansion filler, is from 50 to 90×10−7/° C.
Abstract:
A glass substrate for forming a through-substrate via of a semiconductor device includes a first surface and a second surface, and penetration holes extending from the first surface to the second surface, wherein at least one of the first and second surfaces is chemically strengthened.