Abstract:
A method for reducing an effect of flare produced by a lithographic apparatus for imaging a design layout onto a substrate is described. A flare map in an exposure field of the lithographic apparatus is simulated by mathematically combining a density map of the design layout at the exposure field with a point spread function (PSF), wherein system-specific effects on the flare map may be incorporated in the simulation. Location-dependent flare corrections for the design layout are calculated by using the determined flare map, thereby reducing the effect of flare.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
The present invention relates to lithographic apparatuses and processes, and more particularly to multiple patterning lithography for printing target patterns beyond the limits of resolution of the lithographic apparatus. A method of splitting a pattern to be imaged onto a substrate via a lithographic process into a plurality of sub-patterns is disclosed, wherein the method comprises a splitting step being configured to be aware of requirements of a co-optimization between at least one of the sub-patterns and an optical setting of the lithography apparatus used for the lithographic process. Device characteristic optimization techniques, including intelligent pattern selection based on diffraction signature analysis, may be integrated into the multiple patterning process flow.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
A three-dimensional mask model of the invention provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
A three-dimensional mask model that provides a more realistic approximation of the three-dimensional effects of a photolithography mask with sub-wavelength features than a thin-mask model. In one embodiment, the three-dimensional mask model includes a set of filtering kernels in the spatial domain that are configured to be convolved with thin-mask transmission functions to produce a near-field image. In another embodiment, the three-dimensional mask model includes a set of correction factors in the frequency domain that are configured to be multiplied by the Fourier transform of thin-mask transmission functions to produce a near-field image.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
The present disclosure relates to lithographic apparatuses and processes, and more particularly to tools for optimizing illumination sources and masks for use in lithographic apparatuses and processes. According to certain aspects, the present disclosure significantly speeds up the convergence of the optimization by allowing direct computation of gradient of the cost function. According to other aspects, the present disclosure allows for simultaneous optimization of both source and mask, thereby significantly speeding the overall convergence. According to still further aspects, the present disclosure allows for free-form optimization, without the constraints required by conventional optimization techniques.
Abstract:
Embodiments of the present invention provide methods for optimizing a lithographic projection apparatus including optimizing projection optics therein. The current embodiments include several flows including optimizing a source, a mask, and the projection optics and various sequential and iterative optimization steps combining any of the projection optics, mask and source. The projection optics is sometimes broadly referred to as “lens”, and therefore the optimization process may be termed source mask lens optimization (SMLO). SMLO may be desirable over existing source mask optimization process (SMO) or other optimization processes that do not include projection optics optimization, partially because including the projection optics in the optimization may lead to a larger process window by introducing a plurality of adjustable characteristics of the projection optics. The projection optics may be used to shape wavefront in the lithographic projection apparatus, enabling aberration control of the overall imaging process.