摘要:
An apparatus and method for imaging a sample of substantially undiluted whole blood is provided. The method includes the steps of: providing a substantially undiluted whole blood sample admixed with at least one non-Wright stain colorant, which colorant is operable to differentially identify constituents containing cytoplasmic material; providing an analysis device having an analyzer with at least one processor, at least one sample illuminator, and at least one image sensor; creating an image of the sample using the analysis device; and using the analysis device to transform the image to a transformed image having a coloration recognizable as a Wright stained sample.
摘要:
A method and apparatus for identifying reticulocytes within a blood sample is provided. The method includes the steps of: a) depositing the sample into an analysis chamber adapted to quiescently hold the sample for analysis, and the chamber has a known or determinable height extending between the interior surfaces of panels, which height is such that at least one red blood cell, or an aggregate of red blood cells, within the sample contacts both of the interior surfaces; b) admixing a supravital dye with the sample, which dye is operable to cause reticulin to fluoresce when excited by light of one or more predetermined wavelengths; c) imaging the sample using light that includes the one or more predetermined wavelengths that cause reticulin to fluoresce; d) imaging the sample using light that is absorbed by hemoglobin to produce values of optical density on a per image unit basis; and e) identifying reticulocytes within the sample using the image of the sample created with light that causes the dyed reticulin to fluoresce, and using the per image unit optical density values.
摘要:
A biological fluid analysis cartridge is provided. In certain embodiments, the cartridge includes a base plate extending between a sample handling portion and an analysis chamber portion. A handling upper panel is attached to the base plate within the sample handling portion. A collection port is at least partially formed with the handling upper panel. An initial channel and a secondary channel are formed between the handling upper panel and the base plate. The collection port and initial and secondary channels are in fluid communication with one another. A chamber upper panel is attached to the base plate within the analysis chamber portion. At least one analysis chamber is formed between the chamber upper panel and the base plate. The secondary channel and the analysis chamber are in fluid communication with one another.
摘要:
A method for analyzing a blood sample is provided that includes the steps of: providing a blood sample having one or more of each first and second constituents; admixing a colorant with the sample, which colorant is operative to cause the first constituents and second constituents to fluoresce and absorb light; illuminating at least a portion of the sample; e) imaging a portion of the sample; determining a fluorescence value for each the first constituents and second constituents; determining an optical density value for each of the first constituents and second constituents; and identifying the first constituents and the second constituents using the determined fluorescence and optical density values.
摘要:
A biological fluid analysis cartridge is provided. In certain embodiments, the cartridge includes a base plate extending between a sample handling portion and an analysis chamber portion. A handling upper panel is attached to the base plate within the sample handling portion. A collection port is at least partially formed with the handling upper panel. An initial channel and a secondary channel are formed between the handling upper panel and the base plate. The collection port and initial and secondary channels are in fluid communication with one another. A chamber upper panel is attached to the base plate within the analysis chamber portion. At least one analysis chamber is formed between the chamber upper panel and the base plate. The secondary channel and the analysis chamber are in fluid communication with one another.
摘要:
A method and apparatus for determining hemoglobin concentration is provided. A method aspect includes the steps of: a) depositing an unlysed, substantially undiluted blood sample into an analysis chamber adapted to quiescently hold the sample for analysis; b) imaging the sample in a region of the analysis chamber where the height of the chamber is no more than about twenty microns (20μ) or no less than about two microns (2μ), to produce image signals representative of the optical density of the imaged region; c) determining a sample representative optical density value using the image signals representative of the optical density of the imaged region; and d) determining the hemoglobin concentration of the sample using the sample representative optical density value.
摘要:
A method and apparatus for determining at least one hemoglobin related parameter of a whole blood sample is provided. The method includes the steps of: a) depositing the sample into an analysis chamber adapted to quiescently hold the sample for analysis, the chamber defined by an interior surface of a first panel, and an interior surface of a second panel, and the chamber has a height extending between the interior surfaces of the panels, wherein the chamber is configured to increase the oxygenation state of the sample to a substantially oxygenated state within a predetermined amount of time after entry into the chamber; b) imaging the at least one red blood cell contacting the interior surfaces, and producing image signals; c) determining an optical density of at least a portion of the imaged red blood cell contacting both interior surfaces; and d) determining the at least one hemoglobin related parameter of the red blood cell contacting the interior surfaces, using the determined optical density and a molar extinction coefficient for oxygenated hemoglobin.
摘要:
A method and apparatus for focusing a device for imaging a biologic sample is provided. A method aspect includes the steps of: disposing lenslets within a biologic sample, which lenslets have a height and a refractive index, which refractive index is different from that of the sample, wherein one or both of the imaging device and the sample are relatively locatable so a focal position of the imaging device can be moved along the height of the lenslets; imaging a portion of the sample including lenslets using transmittance at one or more wavelengths; determining an average light transmittance intensity of the sample at the wavelengths; determining an average light transmittance intensity of a region of each lenslet at the wavelengths; and determining the focal position of the imaging device using the average light transmittance intensity of the sample and the average light transmittance intensity of the region of the lenslets.
摘要:
A method for analyzing a blood sample is provided that includes the steps of: providing a blood sample having one or more of each first and second constituents; admixing a colorant with the sample, which colorant is operative to cause the first constituents and second constituents to fluoresce and absorb light; illuminating at least a portion of the sample; e) imaging a portion of the sample; determining a fluorescence value for each the first constituents and second constituents; determining an optical density value for each of the first constituents and second constituents; and identifying the first constituents and the second constituents using the determined fluorescence and optical density values.
摘要:
A biological fluid analysis cartridge is provided. In certain embodiments, the cartridge includes a base plate extending between a sample handling portion and an analysis chamber portion. A handling upper panel is attached to the base plate within the sample handling portion. A collection port is at least partially formed with the handling upper panel. An initial channel and a secondary channel are formed between the handling upper panel and the base plate. The collection port and initial and secondary channels are in fluid communication with one another. A chamber upper panel is attached to the base plate within the analysis chamber portion. At least one analysis chamber is formed between the chamber upper panel and the base plate. The secondary channel and the analysis chamber are in fluid communication with one another.