摘要:
A method for photoelectrochemical (PEC) etching of a p-type semiconductor layer simply and efficiently, by providing a driving force for holes to move towards a surface of a p-type cap layer to be etched, wherein the p-type cap layer is on a heterostructure and the heterostructure provides the driving force from an internal bias generated internally in the heterostructure; generating electron-hole pairs in a separate area of the heterostructure than the surface to be etched; and using an etchant solution to etch the surface of the p-type layer.
摘要:
A method for photoelectrochemical (PEC) etching of a p-type gallium nitride (GaN) layer of a heterostructure, comprising using an internal bias in a semiconductor structure to prevent electrons from reaching a surface of the p-type layer, and to promote holes reaching the surface of the p-type layer, wherein the semiconductor structure includes the p-type layer, an active layer for absorbing PEC illumination, and an n-type layer.
摘要:
Embodiments of the present invention are directed to photoelectrodes having a wire array core and a conformal coating on the core. The wire array core and the conformal coating can be independently selected from inorganic semiconductor materials. The photoelectrodes can be used as either or both the anode and cathode in a device for fuel generation. Such a device, for example, could include a photoanode and a photocathode separated from each other by an electrically and ionically permeable, and proton-conductive membrane.
摘要:
This disclosure relates to structures for the conversion of light into energy. More specifically, the disclosure describes devices for conversion of light to electricity using ordered arrays of semiconductor wires coated in a wider band-gap material.
摘要:
This disclosure relates to structures for the conversion of light into energy. More specifically, the disclosure describes devices for conversion of light to electricity using ordered arrays of semiconductor wires coated in a wider band-gap material.
摘要:
The invention relates to a method to produce a type II silicon clathrate, a method to produce a type I clathrate, and a method to decrease sodium in silicon clathrates.
摘要:
The invention relates to a method to produce a type II silicon clathrate, a method to produce a type I clathrate, and a method to decrease sodium in silicon clathrates.
摘要:
A photoelectrochemical (PEC) etch is performed for chip shaping of a device comprised of a III-V semiconductor material, in order to extract light emitted into guided modes trapped in the III-V semiconductor material. The chip shaping involves varying an angle of incident light during the PEC etch to control an angle of the resulting sidewalls of the III-V semiconductor material. The sidewalls may be sloped as well as vertical, in order to scatter the guided modes out of the III-V semiconductor material rather than reflecting the guided modes back into the III-V semiconductor material. In addition to shaping the chip in order to extract light emitted into guided modes, the chip may be shaped to act as a lens, to focus its output light, or to direct its output light in a particular way.
摘要:
A photoelectrochemical (PEC) etch is performed for chip shaping of a device comprised of a III-V semiconductor material, in order to extract light emitted into guided modes trapped in the III-V semiconductor material. The chip shaping involves varying an angle of incident light during the PEC etch to control an angle of the resulting sidewalls of the III-V semiconductor material. The sidewalls may be sloped as well as vertical, in order to scatter the guided modes out of the III-V semiconductor material rather than reflecting the guided modes back into the III-V semiconductor material. In addition to shaping the chip in order to extract light emitted into guided modes, the chip may be shaped to act as a lens, to focus its output light, or to direct its output light in a particular way.