摘要:
A plasmonic optical device is provided operating in near ultra violet (UV) and visible wavelengths of light. The optical device is made from a substrate and nanoparticles. The nanoparticles have a core with a negative real value relative permittivity of absolute value greater than 10 in a first range of wavelengths including near UV and visible wavelengths of light, and a shell with an imaginary relative permittivity of less than 5 in the first range of wavelengths. A dielectric overlies the substrate, and is embedded with the nanoparticles. If the substrate is reflective, a reflective optical filter is formed. If the substrate is transparent, the filter is transmissive. In one aspect, the dielectric is a tunable medium (e.g., liquid crystal) having an index of refraction responsive to an electric field. The tunable medium is interposed between a first electrode and a second electrode.
摘要:
A digital-to-time converter (DTC) is provided, made from a plurality of series-connected cells. Each cell has an input interface to accept a signal, a control interface to accept a digital command, a delayed signal path, a minimum delay signal path, and an output interface. The signal path is selected in response to the command. The time delay associated with the delayed signal path of each cell can be varied, so that the plurality of series-connected cells is able to provide a large range of delay combinations. For example, if there are n series-connected cells, then the jth series-connected cell, where j varies from 1 to n, conducts the signal through 2j MOS gates in the delayed signal path. Assuming a digital control word with n bit places, the jth series-connected cell accepts the jth bit place of the control word to select a delay path.
摘要:
A method is provided for additionally oxidizing a thin-film oxide. The method includes: providing a substrate; depositing an MyOx (M oxide) layer overlying the substrate, where M is a solid element having an oxidation state in a range of +2 to +5; treating the MyOx layer to a high density plasma (HDP) source; and, forming an MyOk layer in response to the HDP source, where k>x. In one aspect, the method further includes decreasing the concentration of oxide charge in response to forming the MyOk layer. In another aspect, the MyOx layer is deposited with an impurity N, and the method further includes creating volatile N oxides in response to forming the MyOk layer. For example, the impurity N may be carbon and the method creates a volatile carbon oxide.
摘要:
A dual-gate thin film transistor (DG-TFT) and associated fabrication method are provided. The method comprises: forming a first (back) gate in a first horizontal plane; forming source/drain (S/D) regions and an intervening channel region in a second horizontal plane, overlying the first plane; and, forming a second (top) gate in a third horizontal plane, overlying the second plane. The S/D regions and intervening channel region have a combined length, smaller than the length of the first gate. A substrate insulating layer is formed over the substrate, made from a material such as SiO2. A first gate insulation layer is formed over the first gate. Amorphous silicon (a-Si) is deposited over the first gate insulation layer and crystallized. The S/D and channel regions are formed from the crystallized Si layer. A second gate oxide layer is formed over the channel region.
摘要翻译:提供了双栅极薄膜晶体管(DG-TFT)和相关制造方法。 该方法包括:在第一水平面中形成第一(后)栅极; 在第一平面上形成源极/漏极(S / D)区域和在第二水平面中的中间沟道区域; 并且在第三水平面上形成覆盖第二平面的第二(顶部)门。 S / D区域和中间沟道区域具有小于第一栅极的长度的组合长度。 在衬底上形成衬底绝缘层,由诸如SiO 2的材料制成。 在第一栅极上形成第一栅极绝缘层。 非晶硅(a-Si)沉积在第一栅绝缘层上并结晶。 S / D和沟道区域由结晶的Si层形成。 在沟道区上形成第二栅氧化层。
摘要:
A substrate and a method for fabricating variable quality substrate materials are provided. The method comprises: selecting a first mask having a first mask pattern; projecting a laser beam through the first mask to anneal a first area of semiconductor substrate; creating a first condition in the first area of the semiconductor film; selecting a second mask having a second mask pattern; projecting the laser beam through the second mask to anneal a second area of the semiconductor film; and, creating a second condition in the second area of the semiconductor film, different than the first condition. More specifically, when the substrate material is silicon, the first and second conditions concern the creation of crystalline material with a quantitative measure of lattice mismatch between adjacent crystal domains. For example, the lattice mismatch between adjacent crystal domains can be measured as a number of high-angle grain boundaries per area, where high-angle grain boundaries are defined as boundaries separating adjacent crystal domains with a crystal lattice mismatch angle in the range between 15 and 90 degrees. To continue the example, forming a first number of high-angle grain boundaries per area in the first area may include forming adjacent high-angle grain boundaries separated by a first distance, while forming a second number of high-angle grain boundaries per area in the second area may include forming adjacent high-angle grain boundaries separated by a second distance, greater than the first distance.
摘要:
A system and method are provided to sequentially deposit a silicon dioxide base coat barrier layer adjacent a thin silicon film, to minimize the formation of water and —OH radicals. Both the base coat and thin silicon films are sputter to eliminate hydrogen chemistries. Further, the sputter processes are conducted sequentially, without breaking the vacuum seat to minimize the absorption of water in the base coat layer that conventionally occurs between deposition steps. This process eliminates the total number of process steps required, as there is no longer a need for furnace annealing the base coat before the deposition of the thin silicon film, and no longer a need for a dehydrogenation annealing step after the deposition of the thin silicon film.
摘要:
A method is provided for crystallizing a silicon film in liquid crystal display (LCD) fabrication. The method comprises: forming an amorphous silicon film having a thickness in the range of 100 to 1000 Angstroms (Å); irradiating the silicon film with a laser pulse having a pulse width of 50 nanoseconds (ns) or greater, as measured at the full-width-half-maximum (FWHM), using a beamlet width in the range of 3 to 20 microns; and, in response to irradiating the silicon film, laterally growing crystal grains. In one example, irradiating the silicon film may include irradiating with a pulse having a pulse width in the range between 30 and 300 ns FWHM, and an energy density in the range from 200 to 1300 millijoules per square centimeter (mJ/cm2).
摘要:
A method has been provided for forming a polycrystalline silicon (p-Si) film with a small amount of hydrogen. Such a film has been found to have excellent sheet resistance, and it is useful in the fabrication of liquid crystal display (LCD) panels made from thin film transistors (TFTs). The low hydrogen content polycrystalline silicon films are made from introducing a small amount of hydrogen gas, with Ar, during the sputter deposition of an amorphous silicon film. The hydrogen content in the film is regulated by controlling the deposition temperatures and the volume of hydrogen in the gas feed during the sputter deposition. The polycrystalline silicon film results from annealing the low hydrogen content amorphous silicon film thus formed.
摘要:
A metal induced crystallization process is provided which employs an amorphous silicon film precursor deposited by physical vapor deposition, wherein the precursor film does not readily undergo crystallization by partial solid phase crystallization. Using this physical vapor deposition amorphous silicon precursor film, the amorphous silicon film is transformed to polysilicon by metal induced crystallization wherein the crystalline growth occurs fastest at regions that have been augmented with a metal catalyst and proceeds extremely slowly, practically zero, at regions which bear no metal catalyst. Accordingly, by use of the physical vapor deposition amorphous silicon precursor film in the process of the present invention, the metal induced crystallization process may take place at higher annealing temperatures and shorter annealing times without solid phase crystallization taking place. The process has a faster throughput than previous metal induced crystallization processes, results in a polysilicon film having virtually no catalyst impurities remaining in the film, and results in a film having uniform material characteristics. The resulting polysilicon film may be utilized in thin film transistors or liquid crystal displays.
摘要:
A method of physical vapor deposition includes selecting a target material; mixing at least two gases to form a sputtering gas mixture, wherein a first sputtering gas is helium and a second sputtering gas is taken from the gases consisting of neon, argon krypton, xenon and radon; forming a plasma in the sputtering gas mixture atmosphere to sputter atoms from the target material to the substrate thereby forming a layer of target material on the substrate; and annealing the substrate and the deposited layer thereon. An improved physical vapor deposition vacuum chamber includes a target held in a target holder, a substrate held in a substrate holder, a plasma arc generator, and heating rods. A sputtering gas feed system is provided for introducing a mixture of sputtering gases into the chamber; as is a vacuum mechanism comprising at least one turbomolecular pump for evacuating the chamber to a pressure of less than 16 mTorr during deposition. The method and apparatus are particularly suited for forming thin film transistors and liquid crystal displays having thin film transistors therein.