摘要:
There is provided a semiconductor device in which degradation of reliability originating in the interface between an upper insulating layer and an element isolation insulating layer is suppressed. The semiconductor device includes: a semiconductor region; a plurality of stacked structures each of which is disposed on the semiconductor region and has a tunnel insulating film, a charge storage layer, an upper insulating layer, and a control electrode stacked sequentially; an element isolation insulating layer disposed on side faces of the plurality of stacked structures; and a source-drain region disposed on the semiconductor region and among the plurality of stacked structures. The element isolation insulating layer includes at least one of SiO2, SiN, and SiON, the upper insulating layer is an oxide containing at least one metal M selected from the group consisting of a rare earth metal, Y, Zr, and Hf, and Si, and respective lengths Lcharge, Ltop, and Lgate of the charge storage layer, the upper insulating layer, and the control electrode in a channel length direction satisfy the relation “Lcharge
摘要:
According to one embodiment, a nonvolatile memory device includes a memory section. The memory section includes a first insulating layer, a second insulating layer and a pair of electrodes. The second insulating layer is formed on and in contact with the first insulating layer. The second insulating layer has at least one of a composition different from a composition of the first insulating layer and a phase state different from a phase state of the first insulating layer. The pair of electrodes is capable of passing a current through a current path along a boundary portion between the first insulating layer and the second insulating layer. An electrical resistance of the current path is changed by a voltage applied between the pair of electrodes.
摘要:
A semiconductor storage element includes: a source region and a drain region provided in a semiconductor substrate; a tunnel insulating film provided on the semiconductor substrate between the source region and the drain region; a charge storage film provided on the tunnel insulating film; a block insulating film provided on the charge storage film; a gate electrode provided on the block insulating film; and a region containing a gas molecule, the region provided in a neighborhood of an interface between the charge storage film and the block insulating film.
摘要:
A nonvolatile semiconductor memory device includes: a tunneling insulating film; a floating gate electrode; an inter-electrode insulating film, in which an interface facing the floating gate electrode and an interface facing a control gate electrode are defined as the first interface and the second interface, respectively; and a control gate electrode. The inter-electrode insulating film includes one or more first elements selected from rare earth elements, one or more second elements selected from Al, Ti, Zr, Hf, Ta, Mg, Ca, Sr and Ba, and oxygen. A composition ratio of the first element, which is defined as the number of atoms of the first element divided by that of the second element, is changed between the first interface and the second interface, and the composition ratio in the vicinity of the first interface is lower than that in the vicinity of the second interface.
摘要:
According to one embodiment, a nonvolatile memory device includes a memory section. The memory section includes a first insulating layer, a second insulating layer and a pair of electrodes. The second insulating layer is formed on and in contact with the first insulating layer. The second insulating layer has at least one of a composition different from a composition of the first insulating layer and a phase state different from a phase state of the first insulating layer. The pair of electrodes is capable of passing a current through a current path along a boundary portion between the first insulating layer and the second insulating layer. An electrical resistance of the current path is changed by a voltage applied between the pair of electrodes.
摘要:
A nonvolatile semiconductor memory device according to an example of the present invention includes a semiconductor region, source/drain areas arranged separately in the semiconductor region, a tunnel insulating film arranged on a channel region between the source/drain areas, a floating gate electrode arranged on the tunnel insulating film, an inter-electrode insulating film arranged on the floating gate electrode, and a control gate electrode arranged on the inter-electrode insulating film. The inter-electrode insulating film includes La, Al and Si.
摘要:
In a semiconductor device, the side walls are made of SiO2, SiN or SiON, and the top insulating film or gate insulating film is made of an oxide including Al, Si, and metal element M so that the number ratio Si/M is set to no less than a number ratio Si/M at a solid solubility limit of SiO2 composition in a composite oxide including metal element M and Al and set to no more than a number ratio Si/M at the condition that the dielectric constant is equal to the dielectric constant of Al2O3 and so that the number ratio Al/M is set to no less than a number ratio Al/M where the crystallization of an oxide of said metal element M is suppressed due to the Al element and set to no more than a number ratio Al/M where the crystallization of the Al2O3 is suppressed due to the metal element M.
摘要翻译:在半导体器件中,侧壁由SiO 2,SiN或SiON制成,并且顶部绝缘膜或栅极绝缘膜由包括Al,Si和金属元素M的氧化物制成,使得Si / M的数量比设定 在包含金属元素M和Al的复合氧化物中SiO 2组成的固溶度极限的Si / M的数量比不小于Si / M,并且在介电常数等于 Al 2 O 3的介电常数和Al / M的数量比被设定为不小于Al / M的数量比,其中所述金属元素M的氧化物的结晶由于Al元素而被抑制,并且设定为不大于 由于金属元素M而抑制了Al 2 O 3的结晶化的数值比Al / M
摘要:
There is provided a semiconductor device in which degradation of reliability originating in the interface between an upper insulating layer and an element isolation insulating layer is suppressed. The semiconductor device includes: a semiconductor region; a plurality of stacked structures each of which is disposed on the semiconductor region and has a tunnel insulating film, a charge storage layer, an upper insulating layer, and a control electrode stacked sequentially; an element isolation insulating layer disposed on side faces of the plurality of stacked structures; and a source-drain region disposed on the semiconductor region and among the plurality of stacked structures. The element isolation insulating layer includes at least one of SiO2, SiN, and SiON, the upper insulating layer is an oxide containing at least one metal M selected from the group consisting of a rare earth metal, Y, Zr, and Hf, and Si, and respective lengths Lcharge, Ltop, and Lgate of the charge storage layer, the upper insulating layer, and the control electrode in a channel length direction satisfy the relation “Lcharge
摘要:
A nonvolatile semiconductor memory device includes: a tunneling insulating film; a floating gate electrode; an inter-electrode insulating film, in which an interface facing the floating gate electrode and an interface facing a control gate electrode are defined as the first interface and the second interface, respectively; and a control gate electrode. The inter-electrode insulating film includes one or more first elements selected from rare earth elements, one or more second elements selected from Al, Ti, Zr, Hf, Ta, Mg, Ca, Sr and Ba, and oxygen. A composition ratio of the first element, which is defined as the number of atoms of the first element divided by that of the second element, is changed between the first interface and the second interface, and the composition ratio in the vicinity of the first interface is lower than that in the vicinity of the second interface.
摘要:
A method for manufacturing a lanthanum oxide compound on a substrate includes: setting the number of H2O molecule, the number of CO molecule and the number of CO2 molecule to one-half or less, one-fifth or less and one-tenth or less per one lanthanum atom, respectively, the H2O molecule, the CO molecule and the CO2 molecule being originated from an H2O gas component, a CO gas component and a CO2 gas component in an atmosphere under manufacture; and supplying a metal raw material containing at least one selected from the group consisting of lanthanum, aluminum, titanium, zirconium and hafnium and an oxygen raw material gas simultaneously for the substrate under the condition that the number of O2 molecule are set to 20 or more per one lanthanum atom, thereby manufacturing the lanthanum oxide compound on the substrate.