摘要:
An optoelectronic assembly for a computer system includes an electronic chip(s), a substrate, an electrical signaling medium, an optoelectronic transducer, and an optical coupling guide. The electronic chip(s) is in communication with the substrate, which is in communication with a first end of the electrical signaling medium. A second end of the electrical signaling medium is in communication with the optoelectronic transducer, and includes the optical coupling guide for aligning an optical signaling medium with the optoelectronic transducer. An electrical signal from the electronic chip is communicated to the optoelectronic transducer via the substrate and the electrical signaling medium. The optical transducer and electronic chip(s) share a common heat spreader, and communication to other groups of electronic chip(s) is done without the need for communication via a second level electrical package.
摘要:
An optoelectronic assembly for an electronic system includes a transparent substrate having a first surface and an opposite second surface, the transparent substrate being thermally conductive and being metallized on the surface. A support electronic chip set is configured for at least one of providing multiplexing, demultiplexing, coding, decoding and optoelectronic transducer driving and receive functions and is bonded to the second surface of the transparent substrate. A first substrate having a first surface and an opposite second surface, is in communication with the transparent substrate via the metallized second surface and support chip set therebetween. A second substrate is in communication with the second surface of the first substrate and is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support electronic chip set; and an optical signaling medium defined with one end having an optical fiber array aligned with the optoelectronic transducer is substantially normal to the first surface of the transparent substrate, wherein an electrical signal from the support electronic chip set is communicated to the optoelectronic transducer via the metallized second surface of the transparent substrate, and wherein the support electronic chip set and the optoelectronic transducer share a common thermal path for cooling.
摘要:
An optoelectronic assembly for an electronic system includes a thermally conductive, metallized transparent substrate having a first surface and an opposite second surface. A support chip set is bonded to the second surface of the transparent substrate. A first substrate is in communication with the transparent substrate via the metallized second surface and support chip set therebetween. A second substrate is in communication with the second surface of the first substrate and is configured for mounting at least one of data processing, data switching and data storage chips. An optoelectronic transducer is in signal communication with the support chip set, and an optical signaling medium having one end with an optical fiber array aligned with the transducer is substantially normal to the first surface of the transparent substrate. The support chip set and the transducer share a common thermal path for cooling.
摘要:
A communication system which consists of several modules—operating in parallel on segments of a packet—to increase speed and handling capacity. One module acts as master, the others are slave modules controlled by control signals derived by the master module. It is important that in each module the data segment and the respective control signal of each packet are correctly synchronized, because in large systems the data paths carrying packet segments and the control signal paths may have substantially different delays. The invention provides for measurement of the propagation delay differences and for introducing a controlled delay in each slave module, so that data segments and control signals can be correctly correlated by delaying either the one or the other. Synchronization packets are transmitted besides normal data packets, for obtaining time stamps which are used to determine the delay difference.
摘要:
A switching device is able to route the arriving data packets according to data packet destination information to dedicated output ports. The switching arrangement has, for each set of input ports in the switching device, a set of output buffers with an output buffer for storing the payload of each data packet at an address in the output buffer which pertains to the same set of output buffers and belongs to the dedicated output ports. At least one of the output buffers has a set of output queues with an output queue for each output port for storing the address of each payload stored in the corresponding output buffer. An arbiter controls a readout order of the stored addresses. For the output buffers which pertain to the same set of output ports a multiplexer multiplexes according to the readout order the payloads from the output buffers to the output ports.
摘要:
A sleeve has a handle and extensions to engage a fiber optic connector for insertion into and removal from high density adapters. The sleeve may have multiple connectors installed in a single sleeve and it may be removable. The sleeve has first and second extensions to engage the inner and outer housings, respectively, to insert and remove the fiber optic connector from an adapter.
摘要:
The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).
摘要:
Briefly, according to an embodiment of the invention, a computing system comprises: a plurality of tightly coupled processing nodes; a plurality of circuit switched networks using a circuit switching mode, interconnecting the processing nodes, and for handling data transfers that meet one or more criteria; and a plurality of electronic packet switched networks, also interconnecting the processing nodes, for handling data transfers that do meet the at least one criteria. The circuit switched networks and the electronic packet switched networks operate simultaneously. The system additionally comprises a plurality of clusters which comprise the processing nodes, and a plurality of intra-cluster communication links. The electronic packet switched networks are for handling collectives and short-lived data transfers among the processing nodes and comprises one-tenth of the bandwidth of the circuit switched networks.
摘要:
A system for delay optimization scheduling in bufferless crossbar switches includes a plurality of line cards, each line card having an ingress half, an egress half, and a partial scheduler, wherein each line card is configured to transmit scheduling information to a horizontal control broadcast network and a vertical control broadcast network; a plurality of couplers connected by control links to the line cards in a two-dimensional grid, organizing the line cards into rows and columns; a bufferless crossbar switch connected by data path links to each line card to the ingress half and the egress half; wherein control information is distributed in a first stage and a second stage of broadcasts.
摘要:
A method and system for reducing arbitration latency employs speculative transmission (STX) without prior arbitration in combination with routing fabric scheduled arbitration. Packets are sent from source locations to a routing fabric through scheduled arbitration, and also through speculative arbitration, to non-contentiously allocate outputs that were not previously reserved in the routing fabric to the speculatively transmitted packets.